sunnuntai 14. syyskuuta 2014

Detoxifying the Body - Calsium D -Glukaraatti. Glukuronidaatio


Glukuronidaatio on prosessi, joka muuttaa aineita vesiliukoisemmiksi. 

Sen seurauksena ne ovat helpommin poistettavissa elimistöstä virtsan mukana.
 - Kun glukuronidaatiota estetään, joidenkin aineiden biosaatavuus näyttää paranevan. Biosaatavuudella tarkoitetaan ravintoaineiden imeytyvyyttä elimistössä.



CALSIUM D -GLUKARAATTI 

Glukuronidaatio on kapasiteetiltaan suurin ihmisen vierasaineiden metaboliaan keskittynyt 
aineenvaihduntareitti.

Siinä toksiset (myrkylliset) yhdisteet sidotaan maksassa glukuronihappoon, jotta ne voidaan poistaa kehosta turvallisesti. Betaglukuronidaasi on yksi prosessiin osallistuvista entsyymeistä. Sitä esiintyy luontaisesti useissa kudoksissa ja soluissa.
Kalsium-d-glukaraatti on glukaarihapon patentoitu muoto, jonka vaikutus kohdistuu betaglukuronidaasin entsyymaattiseen aktiivisuuteen. 3 kpl USA Patenttia.


Vierasainemetabolia 

Yleisfarmakologiaa ja –toksikologiaa

Yleistä

Lähes kaikissa elävissä organismeissa on kehittynyt kyky päästä eroon niille vieraista aineista. Ihminen on jatkuvasti altistunut lukemattomille vieraille aineille, kuten kasvien syntetisoimille aineille, ravinnon lisäaineille, saasteille, nautintoaineille ja lääkkeille. Nämä elimistölle vieraat aineet saatetaan erityskelpoiseen muotoon muuttamalla niiden rakennetta metabolian avulla. Koska elimistö ei tee eroa siinä, ovatko siihen tulevat vieraat aineet esimerkiksi saasteita vai lääkkeitä, käytetään yleistermiä vierasainemetabolia eli biotransformaatio.

Lääkeainemetabolia on osa yleistä vierasainemetaboliaa 

Useimpien lääkeaineiden vaikutus elimistössä päättyy metabolian ja munuaisten kautta tapahtuvan erittymisen avulla. Metabolian päätehtävä on muuttaa elimistöön tullut vieras aine erityskelpoiseen muotoon. Tämä tapahtuu useiden erilaisten entsymaattisten reaktioiden kautta, joissa lääkeaine muutetaan vesiliukoisemmaksi. 

Vierasainemetabolian tärkeyttä kuvaa hyvin kemikaalien käyttäytyminen elimistössä. Pystyäkseen imeytymään elimistön kalvojen läpi aineen tulee olla lipidiliukoinen. Verenkiertoon imeytynyt aine suodattuu munuaisten glomeruluksiin ja tubuluksiin. Tubuluksista lipidiliukoinen aine imeytyy seinämän läpi takaisin verenkiertoon. Jos elimistössä ei olisi mekanismia, joka muuttaa aineen vesiliukoiseksi, se ei erittyisi vaan lipidiliukoinen aine jäisi elimistöön ja kumuloituisi kudoksiin. Esimerkiksi hyvin lipidiliukoisen ja lyhytvaikutteisen barbituraatin, tiopentaalin, erittyminen pois elimistöstä kestäisi sadan vuoden ajan, ellei se metaboloituisi esiliukoisemmaksi.

Vierasainemetabolian tapahtumapaikat

Tärkein vierasaineita metaboloiva elin on maksa, koska metaboloivien entsyymien pitoisuudet ovat siellä suurimmat. Muita metaboloivia elimiä ovat keuhkot, iho ja munuainen.
Suolistossa tapahtuu varsin paljon vierasainemetaboliaa, ja siihen osallistuvat sekä suolen seinämä että suoliston bakteerit. Yhteistä näille elimille on se, että vierasaineet tulevat niiden kautta elimistöön. Lisäksi vierasaine -metaboliaa tapahtuu aivoissa, istukassa sekä monissa endokriinisissä kudoksissa.

Solun sisällä vierasaineiden metabolia tapahtuu pääasiassa endoplasmiseen kalvostoon kiinnittyneiden entsyymien avulla. Kun solu ja sen organellit rikotaan, voidaan sentrifugoimalla erottaa ns. mikrosomaalinen fraktio, joka sisältää pääasiassa solukalvoston osia.
Mikrosomeista voidaan mitata suuria pitoisuuksia vierasaineita hapettavia entsyymejä. Metaboloivia entsyymejä on myös vapaana solulimassa.

Metaboliareitit

Vierasaineita metaboloivat entsyymit jaotellaan kahteen pääryhmään, I vaiheen ja II vaiheen entsyymeihin. I vaiheen entsyymit katalysoivat funktionaalisen ryhmän, esimerkiksi hydroksyyliryhmän, muodostumisen vierasaineeseen. II vaiheen entsyymit puolestaan
konjugoivat vierasaineen johonkin toiseen molekyyliin, kuten glutationiin tai glukuronidiin. Taulukossa 5-1 on lueteltu tärkeimpiä I ja II vaiheen reaktioita. Useimmiten I vaiheen entsyymit muodostavat ensin vierasaineeseen funktionaalisen ryhmän, johon II vaiheen entsyymit liittävät vesiliukoisen molekyylin. Joskus vierasaine konjugoituu suoraan ilman I vaiheen metaboliaa (kuva 5-1).

Metabolialla voi olla neljänlaisia seurauksia:       

1) Aktiivisesta lääkeaineesta syntyy inaktiivinen metaboliitti.
Metaboliitti on vesiliukoisempi kuin kanta-aine, ja siksi se erittyy pois elimistöstä munuaisten, sapen tai keuhkojen kautta. Tämä on yleisin metabolian kulku, ja näin tapahtuu useimpien lääkeaineiden metaboloituessa.
2) Aktiivisesta lääkeaineesta syntyy aktiivinen metaboliitti. Myös tätä tapahtuu usein. Esimerkiksi analgeeteista asetyylisalisyylihappo muuttuu salisyylihapoksi ja fenasetiini parasetamoliksi. Joskus metaboliitin ominaisuudet poikkeavat kanta-aineesta. Esimerkiksi fenyylibutatsonin metaboliitti oksifenbutatsoni on voimakkaampi tulehduksen estäjä kuin fenyylibutatsoni ja sen puoliintumisaika on pitempi. Toisinaan lääkeaine metaboloituu sekä aktiivisiksi että inaktiivisiksi yhdisteiksi. 

3) Inaktiivisesta lääkeaineesta syntyy aktiivinen metaboliitti. Tästä on esimerkkinä syöpälääke syklofosfamidi, jonka täytyy aktivoitua useaksi alkyloivaksi metaboliitiksi estääkseen solunjakautumista. Myös a1-reseptorin antagonisti fenoksibentsamiini on itse tehoton ja aktivoituu metaboloitumalla.
4) Aktiivisesta tai inaktiivisesta lääkeaineesta syntyy toksinen metaboliitti.
Parasetamolin liika-annon yhteydessä voi syntyä maksassa N-hydroksiparasetamolia, joka edelleen muuttuu reaktiiviseksi, maksasoluja tuhoavaksi yhdisteeksi.


 Tunnetaan myös lukuisia metabolisesti aktivoituvia vierasaineita, jotka eivät ole käytössä lääkkeinä. 
Esimerkiksi suuri osa syöpää aiheuttavista aineista (kemiallisista karsinogeeneista) muuttuu vasta elimistöön päästyään varsinaiseen syöpää aiheuttavaan muotoon metabolisen aktivaation kautta.

Kuva 5-1. Vierasainemetabolian kaksi päävaihetta.


Useimmiten I vaiheen entsyymit muodostavat vierasaineeseen funktionaalisen ryhmän, johon II vaiheen konjugoivat entsyymit liittävät jonkin endogeenisen molekyylin, esimerkiksi glukuronidin.
Toisinaan vierasaine konjugoituu suoraan.


-
http://www.medicina.fi/fato/05.pdf
_
http://fi.wikipedia.org/wiki/Glukuronidaatio
_
http://www.ncbi.nlm.nih.gov/pubmed/11465080
_
http://www.ncbi.nlm.nih.gov/pubmed/11593076

______

Calcium D-Glucarate An Anti-Cancer Supplement

Detoxifying the Body


In Lessons from the Miracle Doctors, I cover the liver in some detail, describing how it detoxifies the body. The main process that it uses for doing this is called conjugation - - literally combining toxins with other substances to neutralize them or prepare them for elimination.

//

Ei kommentteja:

Lähetä kommentti

You are welcome to show your opinion here!