torstai 16. kesäkuuta 2016

Mitochondrial biology and oxidative stress in Parkinson disease pathogenesis - Candida a.

Nature Clinical Practice Neurology (2008) 4, 600-609
doi:10.1038/ncpneuro0924
Received 11 August 2008 | Accepted 11 September 2008

Mitochondrial biology and oxidative stress in Parkinson disease pathogenesis

Claire Henchcliffe* and M Flint Beal  About the authors
Correspondence *Weill Cornell Parkinson's Disease and Movement Disorders Institute, Suite 400, 428 East 72nd Street, New York, NY 10021, USA

Email
 clh2007@med.cornell.edu





SUMMARY


Parkinson disease (PD) is associated with progressive loss of dopaminergic neurons in the substantia nigra, as well as with more-widespread neuronal changes that cause complex and variable motor and nonmotor symptoms. Recent rapid advances in PD genetics have revealed a prominent role for mitochondrial dysfunction in the pathogenesis of the disease, and the products of several PD-associated genes, including SNCAParkinPINK1DJ-1LRRK2and HTR2A, show a degree of localization to the mitochondria under certain conditions. Impaired mitochondrial function is likely to increase oxidative stress and might render cells more vulnerable to this and other related processes, including excitotoxicity. The mitochondria, therefore, represent a highly promising target for the development of disease biomarkers by use of genetic, biochemical and bioimaging approaches. Novel therapeutic interventions that modify mitochondrial function are currently under development, and a large phase III clinical trial is underway to examine whether high-dose oral coenzyme Q10 will slow disease progression. In this Review, we examine evidence for the roles of mitochondrial dysfunction and increased oxidative stress in the neuronal loss that leads to PD and discuss how this knowledge might further improve patient management and aid in the development of 'mitochondrial therapy' for PD.

REVIEW CRITERIA

English language peer-reviewed published literature was searched in MEDLINE for reviews and original research using the keywords "Parkinson's disease", "mitochondria" and "oxidative stress"; along with the names of individual Parkinson disease-associated genes, either singly or in combination. Secondary references from these articles were then screened for inclusion.

INTRODUCTION

Parkinson disease (PD) is a chronic, and often devastating, progressive neurodegenerative disease. Loss of dopaminergic neurons in the substantia nigra leads to the characteristic motor features of tremor, rigidity and bradykinesia, while more-widespread neuronal changes lead to complex and variable nonmotor symptoms. Strong evidence now exists to support a role for aberrant mitochondrial form and function, as well as increased oxidative stress, in the pathogenesis of PD.1, 2 A complex interplay occurs between mitochondria and other cellular machinery that affects cell survival, as mitochondria not only have a key role in electron transport and oxidative phosphorylation, but they are also the main cellular source of free radicals, and they are involved in calcium homeostasis and in the regulation and instigation of cell-death pathways (Figure 1).

The products of a number of PD-associated genes are involved in these pathways and have recently been found to influence the balance of mitochondrial fission and fusion, thus affecting the maintenance of dynamic networks of mitochondrial tubular structures. In addition, studies of mitochondrial function in PD underscore a pathophysiological heterogeneity within this disorder; mitochondrial dysfunction is not detected in all individuals with PD, a factor that will be of critical importance in the development of individualized therapies in the years ahead. In this article, we highlight important recent advances in mitochondrial biology that have contributed to our understanding of PD pathogenesis and will aid in the development of future treatment strategies.
Figure 1 Mitochondrial dysfunction affects diverse cellular processes that can culminate in cell death.
Figure 1 : Mitochondrial dysfunction affects diverse cellular processes that can culminate in cell death. Unfortunately we are unable to provide accessible alternative text for this. If you require assistance to access this image, or to obtain a text description, please contact npg@nature.com
Mitochondrial dysfunction affects a number of cellular pathways, leading to damage of intracellular components and to cell death. Abnormal metabolic function, abnormal morphology, and impaired fission–fusion balance have all been observed in mitochondria in at least some forms of Parkinson disease. Mitochondria are a major source of free radicals in the cell, resulting in oxidative stress, but mitochondria are also integral to the oxidative stress response. Increased oxidative stress can lead to impaired function of the UPS, thereby further affecting cell survival. Mitochondria also sequester calcium when intracellular calcium levels rise during the excitotoxic process. The threshold for excitotoxicity might decrease if mitochondrial ATP production is impaired. Mitochondria also have a pivotal role in apoptotic cell death. Mitochondrial release of cytochrome c and other 'pro-apoptotic factors', such as AIF, into the cytoplasm triggers a cascade of events, culminating in cell death. Abbreviations: AIF, apoptosis-initiating factor; UPS, ubiquitin–proteasomal system.
Full figure and legend (30K)Figures & Tables indexDownload PowerPoint slide (89K)
Top

MITOCHONDRIAL DYSFUNCTION AND OXIDATIVE DAMAGE

The most direct evidence for disrupted mitochondrial metabolism has come from studies of autopsy tissue and other tissue samples and in vitro cell cultures derived from patients with PD. One finding at autopsy is that the activity of complex I, a major component of the electron transport chain, is decreased in the substantia nigra3 and frontal cortex4 in patients with PD, and sophisticated immunocapture techniques have demonstrated increased oxidative damage and reduced electron transfer rates through complex I subunits in these individuals.5 This abnormality is predicted to render cells more vulnerable to Bax-induced apoptosis and conceivably contributes to the demise and dysfunction of cells during the PD disease process. Electron transport chain impairment might actually be systemic, as decreased complex I activity has been demonstrated in platelets,6 and defective oxidative phosphorylation has been suggested to occur in skeletal muscle.7 Moreover, fusion of platelets from individuals with PD and known complex I deficiency with mitochondria-deficient rho0 cell lines produces cell cybrids with complex I deficiency.8, 9 In addition to the in vitro findings, magnetic resonance spectroscopy studies, by examining high-energy phosphate levels in the temporoparietal region10 and occipital lobe11 and by measuring increased cerebral lactate levels in PD,12, 13 have demonstrated metabolic abnormalities consistent with mitochondrial dysfunction and a shift to anaerobic metabolismin vivo in humans with PD.
Mitochondrial dysfunction leads to increased oxidative stress. Oxidative damage to lipids, proteins and DNA,14, 15 as well as a decrease in the levels of the important antioxidant reduced glutathione,16 has been detected in autopsy tissue from the brains of individuals with PD. These findings provide a plausible link between oxidative damage and formation of the Lewy body protein aggregates that are characteristic of PD, as oxidative damage induces alpha-synuclein aggregation and impairs proteasomal ubiquitination and degradation of proteins.17 A recent study demonstrated higher mean plasma 8-hydroxydeoxyguanosine levels in patients with PD than in controls,18providing yet more evidence of systemic effects of the disease. Interestingly, increased serum levels of uric acid, a potent antioxidant, are associated with a lower risk of PD in men.19 Recent advances in metabolomic, proteomic and transcriptomic approaches are anticipated to permit further identification of alterations at the molecular level that are relevant to mitochondrial metabolism in PD.
What are the consequences of abnormal mitochondrial function in PD? Mitochondria have an integral role in the apoptotic cell death pathway; when the outer mitochondrial membrane is rendered permeable by the action of 'death agonists', such as Bax, cytochrome c is released into the cytosol, leading to caspase activation and apoptosis.20 Similar pathways are also activated by opening of the mitochondrial permeability transition pore, an event that can occur under conditions of oxidative stress or electron transport chain inhibition, leading to collapse of the mitochondrial membrane potential. Mitochondrial dysfunction and oxidative stress might, therefore, 'reset' the threshold for activation of apoptotic pathways in response to Bax and other pro-apoptotic molecules. Impaired energy metabolism resulting from mitochondrial dysfunction has also been proposed to render cells vulnerable to 'weak excitotoxicity', which is proposed to result from changes in the energy-dependent cell membrane potential. This weak excitotoxic injury could potentially increase free radical generation and add to cellular injury.21Mitochondrial dysfunction and increased oxidative stress is also predicted to overload the ubiquitin–proteasomal system (UPS) of protein degradation, leading to accumulation of misfolded or damaged proteins.
Top

ENVIRONMENTAL INFLUENCES ON MITOCHONDRIA AND  COMPLEX I

Several complex I inhibitors replicate some of the key motor features of PD and cause death of dopaminergic neurons. For example, parkinsonism in humans has been reported to result from unintentional exposure to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP).22 Chronic infusion of the pesticide rotenone reproduces a parkinsonian syndrome in rats that is associated with selective loss of dopaminergic neurons and Lewy body-like fibrillar cytoplasmic inclusions containing ubiquitin and alpha-synuclein.23 Administration of rotenone to Drosophila melanogaster results in levodopa-responsive locomotor deficits and loss of dopaminergic neurons.24 Paraquat, a free radical generator, causes loss of dopaminergic neurons and motor deficits in rodents,25 with a corresponding dramatic increase in free radical formation by mitochondria. The precise role of environmental complex I inhibitors in PD remains to be defined, but these results help to corroborate concerns over other environmental toxins. For example, a link has been suggested to exist between PD and workplace exposure to the industrial solvent trichloroethylene, which inhibits complex I and causes nigral cell loss in animals.26
Top

GENETIC INFLUENCES ON MITOCHONDRIA AND COMPLEX I

MITOCHONDRIAL GENETIC ALTERATIONS

Maternally inherited mutations in mitochondrial DNA (mtDNA) are rarely linked to PD, although one kindred with maternally inherited PD and complex I deficiency27 and five families with a probable maternal PD inheritance pattern have been reported.28 A missense mutation in the ND4 subunit of complex I has led to atypical parkinsonism and loss of nigral neurons in one kindred, although this mutation is more typically associated with Leber hereditary optic neuropathy.29 Mutation in the gene encoding human mtDNA polymerase subunit gamma (POLG) leads to clinical parkinsonism associated with multiple mtDNA deletions.30 Parkinsonism is also seen as a feature of several well characterized mitochondrial disorders, including myoclonic epilepsy with ragged red fibers (MERRF) and mitochondrial encephalomyopathy with stroke-like episodes (MELAS). As is the case in individuals with POLG mutations, however, the diagnosis of MERRF and MELAS is almost always aided by other features not typically found in PD, such as progressive external ophthalmoplegia, seizures, neuropathy, and myopathy.
A clear mitochondrial genetic contribution is evident in cases of idiopathic PD, and this contribution is most probably attributable to acquired somatic mutations. Acquired mtDNA deletions have now been demonstrated in PD by long-range polymerase chain reaction studies of pooled laser microdissected neurons from brain tissue samples isolated at autopsy.31 More-extensive mtDNA deletions, which are associated with cytochrome c oxidase deficiency, occur in patients with PD compared with age-matched controls, and oxidative damage leading to double-strand breaks in mtDNA might be instrumental in the acquisition of these somatic mutations.32 In addition to these acquired mutations, studies have suggested that specific haplogroups, such as UJKT, might affect PD risk,33 although the effects of these haplogroups are likely to vary between different populations.

NUCLEAR GENE ALTERATIONS AFFECTING MITOCHONDRIAL FUNCTION AND OXIDATIVE STRESS

A growing body of evidence indicates that the products of PD-associated genes have important effects on mitochondrial morphology, function and oxidative stress (Table 1Figure 2). The effects of dysfunction of these genes are summarized in the sections that follow.
Figure 2 Products of PD-associated genes that affect mitochondrial function and oxidative stress.
Figure 2 : Products of PD-associated genes that affect mitochondrial function and oxidative stress. Unfortunately we are unable to provide accessible alternative text for this. If you require assistance to access this image, or to obtain a text description, please contact npg@nature.com
Acquired somatic mutations affect mitochondrial electron transport chain function, and such mutations are increased in the substantia nigra in patients with PD. Rare inherited mutations in genes encoding electron transport chain components have been associated with parkinsonism. Parkin, alpha-synuclein, PINK1, DJ-1, LRRK2 and HTRA2, are all encoded by nuclear genes, mutations in which can lead to PD, and all show a degree of localization to the mitochondria. Parkin is partially localized to the outer mitochondrial membrane, protects against oxidative stress, and has a hypothesized role in mitochondrial biogenesis. LRRK2 associates, at least in part, with the outer mitochondrial membrane; its precise function in that location is unclear, but it is thought to interact with Parkin. HTRA2 is a mitochondrial serine protease, the release of which might be involved in apoptotic cell death. PINK1 is a mitochondrial serine–threonine kinase that affords protection against oxidative stress and acts with Parkin to regulate the balance of mitochondrial fission and fusion. DJ-1 is relocated to mitochondria under conditions of oxidative stress and is thought to be neuroprotective under such conditions. The alpha-synuclein protein has an amino-terminal mitochondrial targeting sequence and, when overexpressed or under conditions of acidification, is at least partially associated with the inner mitochondrial membrane, where it might cause direct damage. Abbreviations: HTRA2, high temperature requirement protein A2; LRRK2, leucine-rich repeat kinase 2; PD, Parkinson disease; PINK1, PTEN-induced putative kinase 1.
Full figure and legend (92K)Figures & Tables indexDownload PowerPoint slide (151K)

Table 1 Involvement of Parkinson disease-associated genes in mitochondrial dysfunction and oxidative stress.
Table 1 - Involvement of Parkinson disease-associated genes in mitochondrial dysfunction and oxidative stress.
Full tableFigures & Tables indexDownload PowerPoint slide (222K)
alpha-synuclein
The alpha-synuclein protein is an abundant protein found particularly in axonal termini and is also a component of Lewy bodies. Certain mutations in the alpha-synuclein gene (SNCA; also known as PARK1), including those causing the Ala53Thr and Ala30Pro substitutions, as well as gene triplication (the triplicated locus is also known as PARK4), lead to autosomal dominant PD. The wild-type function of alpha-synuclein is not well understood, but there seems to be a reciprocal relationship between the activity of this protein and mitochondrial function.
Oxidative damage to alpha-synuclein affects the protein's aggregation—an effect that might partially explain the cellular toxicity of the protein. The alpha-synuclein protein contains an amino-terminal mitochondrial targeting sequence,34 and acidification of the cytosol or overexpression of alpha-synuclein can cause the protein to become localized to mitochondria.35, 36 Moreover, when exposed to rotenone, human embryonic kidney cells that overexpress alpha-synuclein are more susceptible to cell death and have lower measurable levels of ATP than control cells.36 Degenerating and dysmorphic mitochondria with evidence of DNA damage are present in brainstem neurons of mice that overexpress the human Ala53Thr form of alpha-synuclein.37 The alpha-synuclein protein also seems to induce oxidative damage and mitochondrial release of cytochrome c.38 In aging yeast, functional mitochondria are required for alpha-synuclein toxicity.39Mice with a knockout of the Snca gene demonstrate increased resistance to MPTP through modulation of complex I activity,40 whereas administration of MPTP to mice that overexpress alpha-synuclein leads to swollen, morphologically abnormal mitochondria.41
Parkin
A number of mutations in the Parkin gene (also known as PARK2) lead to autosomal recessive PD. Parkin acts as a ubiquitin E3 ligase within the UPS, and this activity is vulnerable to oxidative damage. Parkin also seems to have a fundamental role in mitochondrial function, and the protein has been detected in mitochondria in replicating cells.42 Parkin-null D. melanogastermutants develop prominent apoptotic muscle degeneration with mitochondrial pathology and decreased resistance to oxidative stress.43, 44 Parkin-deficient mice have reduced striatal mitochondrial respiratory capacity, with decreased levels of the subunits of the mitochondrial electron transport complexes I and IV.45 In addition, in humans with PD and in those who are homozygous forParkin mutations, leukocyte mitochondrial complex I and IV activities are reduced.46 A link between Parkin and oxidative stress is demonstrated by the finding that Parkin-null mice manifest increased protein and lipid peroxidation.45
A recent and intriguing finding is that Parkin is involved in the regulation of mitochondrial morphology.47 Parkin affects mitochondrial biogenesis in conjunction with PTEN-induced putative kinase 1 (PINK1; see below), and overexpression of Parkin enhances transcription and replication of mitochondrial DNA.42
PTEN-induced putative kinase 1
Mutations in PINK1 (also known as PARK6) lead to a rare autosomal form of PD. The PINK1 protein is a serine–threonine kinase localized to the mitochondrial membrane via an 8 kDa amino-terminal mitochondrial targeting sequence.48 The mitochondrial chaperone protein TRAP1 is a PINK1 substrate,49 but PINK1 might not be exclusively mitochondrial and is probably dynamically distributed between various cellular compartments, including the cytosol. Cells isolated from individuals with a PINK1 mutation that causes a Gly309Asp substitution have reduced complex I activity and evidence of increased oxidative damage compared with cells from control individuals.50 In addition, a Pink1 deficiency in D. melanogaster results in loss of dopaminergic cells, as well as enhanced susceptibility to oxidative stress and reduced ATP levels.51 These D. melanogaster mutants also demonstrate reduced mitochondrial mass with disorganized morphology, similar to the effects ofParkin mutations. Such morphological changes could result simply from a dependency on oxidative phosphorylation for maintenance of intact mitochondrial networks, although there is evidence that PINK1 itself also regulates mitochondrial fission and fusion. Overexpression of PINK1 in mammalian or D. melanogaster cells results in increased mitochondrial fission. In D. melanogaster, altered function of Drp1, a component of the mitochondrial fission–fusion apparatus, modifies the Pink1-null phenotype.52
PINK1 also seems to possess neuroprotective properties. For example, wild-type, but not mutant, PINK1 attenuates staurosporine-induced apoptosis and reduces mitochondrial cytochrome c release when overexpressed in SH-SY5Y cells.53 Expression of a small interfering RNA (siRNA) that targets PINK1increases susceptibility to 1-methyl-4-phenylpyridinium (MPP+) or rotenone,53and in human dopaminergic neurons expression of this siRNA leads to reduced long-term survival, along with mitochondrial dysfunction, abnormal mitochondrial morphology, and increased oxidative stress.54
Intriguingly, overexpression of Parkin in HeLa cells55 can rescue some features of the PINK1-deficient phenotypes,51 including altered mitochondrial membrane potential and morphology, indicating that PINK1 and Parkin function via a common pathway.
DJ-1
DJ-1 (also known as PARK7) has multiple functions, but its overall wild-type function seems to be to protect cells from oxidative-stress-related death.56, 57Under conditions of oxidative stress, the DJ-1 protein relocalizes from the nucleus to the mitochondrial matrix and intermembrane space.58 A mutation affecting the cysteine 106 residue prevents this process and attenuates the protection afforded by DJ-1 against oxidative stress and mitochondrial damage.59
Normal DJ-1 function protects cells against a variety of insults; D. melanogaster double knockout mutations of the DJ-1 homologs DJ-1alpha and DJ-1beta are exquisitely sensitive to rotenone and paraquat,60 and DJ-1beta-deficient flies display a locomotor deficit that is exacerbated by oxidative stress.61 DJ-1knockout mice have enhanced sensitivity to MPTP, and their embryonic cortical neurons are more susceptible than wild-type neurons to oxidative stress.61Furthermore, introduction of an siRNA that targets DJ-1alpha into D. melanogasterincreases levels of reactive oxygen species, increases sensitivity to oxidative stress, and results in degeneration of dopaminergic neurons.62 DJ-1 might reduce alpha-synuclein aggregation,63 and it might physically associate with alpha-synuclein.64 In D. melanogaster, DJ-1 functions as a PTEN suppressor.61
Leucine-rich repeat kinase 2
Mutations in the leucine-rich repeat serine–threonine-protein kinase 2 gene (LRRK2; also known as PARK8) represent the most common known cause of familial PD; these mutations also account for cases of sporadic, late-onset PD. LRRK2 has a conserved serine–threonine kinase mitogen-activated protein kinase kinase kinase (MAPKKK) domain, and is a member of the Roc GTPase family. The commonly occurring Gly2019Ser substitution takes place in the MAPKKK domain, and the mutation augments kinase activity.65 Although the majority of LRRK2 is present in the cytoplasm, approximately 10% of these proteins are associated with the outer mitochondrial membrane,65 raising the question of whether mutant LRRK2 kinase hyperactivity might directly affect mitochondrial function.
HTRA2
High temperature requirement protein A2 (HTRA2; also known as OMI or PARK13) is a mitochondrial serine protease. Mutations in the gene encoding this protein are rare in individuals with PD, and mutations in HTRA2 are suggested to be a susceptibility factor for PD. Homozygous HtrA2 knockout mice develop striatal degeneration and parkinsonism66 in the context of more-widespread neuronal loss. Expression of a mutation that causes the Gly399Ser substitution or a polymorphism that produces an Ala141Ser substitution, both of which have been found in individuals with PD, leads to mitochondrial swelling, decreased mitochondrial membrane potential, and increased risk of staurosporine-induced cell death.67 Permeabilization of the mitochondrial membrane by pro-apoptotic molecules might result in release of HTRA2 as part of the programmed cell death pathway.68 The protease activity of HTRA2 is controlled by PINK1-dependent phosphorylation, and HTRA2 phosphorylation is decreased in brain tissue from individuals with PD who carry PINK1mutations.69 A PINK1 mutation that has been proposed to be pathogenic has also been found in individuals without PD, however, so its significance requires further clarification.70
Clearly, there is more to learn regarding the functions of the PD-associated genes and gene modifiers that have been identified to date. The data described above, however, support a direct or indirect role for several of these genes in both mitochondrial function and the cellular response to oxidative stress.
Top

THERAPEUTIC IMPLICATIONS

The concept of 'mitochondrial therapy' is a new approach in PD, but it is being intensively tested. Coenzyme Q10 (CoQ10) is a naturally occurring antioxidant that affects mitochondrial depolarization and acts as an electron transporter for mitochondrial complexes I and II.71 CoQ10 levels are low in mitochondria that have been isolated from individuals with PD, and the ratio of oxidized to reduced CoQ10 is greater in patients with PD than in controls, suggesting increased oxidative stress in the former. In mice and primates, CoQ10 protects against paraquat-induced oxidative stress, loss of dopaminergic neurons resulting from rotenone exposure, and both acute and chronic MPTP-induced dopaminergic cell death.72, 73, 74, 75
The effects of CoQ10 in PD are not fully understood, but a recent magnetic resonance spectroscopy study in patients with progressive supranuclear palsy demonstrated a significant increase in the ratio of high-energy to low-energy phosphates (suggesting improved oxidative phosphorylation) in the occipital cortex after short-term administration of CoQ10.76 In a small, randomized, double-blind, placebo-controlled study in untreated individuals with early PD, high-dose supplementation with CoQ10 at a dose of up to 1200 mg daily, in conjunction with alpha-tocopherol, was suggested to slow progression of disease in the absence of symptomatic benefit.77 When administered at a dose of 2400 mg daily in early PD as part of the Neuroprotection Exploratory Trials in Parkinson Disease (NET-PD) program, the use of CoQ10 could not be rejected as futile on the basis of the prespecified criteria.78 Much discussion has taken place, however, regarding the validity of these criteria. A large phase III trial comparing placebo, 1,200 mg, and 2,400 mg CoQ10 daily is now underway in an attempt to dispel this controversy.
Creatine, in the form of phosphocreatine, a high-energy phosphate, buffers cellular ATP and prevents opening of the mitochondrial permeability transition pore. Creatine attenuates MPP+-mediated toxicity in embryonic ventral mesencephalic neurons and is protective against MPTP. In individuals with PD who participated in the NET-PD investigation, creatine was well tolerated and its use could not be rejected as futile.79 A large clinical trial is now planned to test the potential of CoQ10 as a disease-modifying agent.
Rasagiline is a monoamine oxidase type B inhibitor that produces a mild symptomatic benefit in patients with PD. The drug has multiple effects on mitochondrial function, including stabilization of the mitochondrial membrane potential,80 and evidence from a delayed-start clinical trial of rasagiline suggests that the agent might have a disease-modifying effect.81 Results from another delayed-start design phase III clinical trial are awaited.
Recent advances in the dissection of the complex cellular pathways that influence mitochondrial structure and function have exposed new potential therapeutic targets. The peroxisome-proliferator-activated receptor gamma coactivator (PGC)-1alpha is a transcriptional coactivator that regulates mitochondrial biogenesis and energy metabolism, thereby aiding in the maintenance of energy homeostasis. Resveratrol, a polyphenolic compound abundant in grape skins, induces expression of genes involved in mitochondrial biogenesis and oxidative phosphorylation by activating NAD-dependent deacetylase sirtuin-1 (SIRT1) and PGC-1alpha.82 Although the effects of resveratrol in PD are unclear, the agent seems to protect against MPTP-induced dopaminergic neuron loss in mice.83
Top

CONCLUSIONS AND FUTURE PROSPECTS

A growing body of evidence now indicates that mitochondrial dysfunction and oxidative stress have central roles in PD pathogenesis. Recent advances in understanding the genetics of PD in humans, as well as the use of animal models of PD, have enabled us to make important steps not only in identifying the proteins involved in the pathways of PD pathogenesis, but also in determining how these proteins interact, both of which have enabled us to link oxidative stress and mitochondrial dysfunction with abnormal UPS function.
Commercial genetic testing is now available for SNCAParkinPINK1 andLRRK2 gene mutations, as well as for mutations in certain mitochondrial genes. Until the consequences of these mutations are better understood, the decision of whether to test for PD-associated gene mutations remains a matter of clinical judgment and should be made on the basis of a full and informed discussion between clinician and patient. In the future, however, a patient's genotype might conceivably have value in predicting the individual's response to treatments and disease-modifying interventions. We feel, therefore, that it is imperative for patients be encouraged to participate in research studies where appropriate, so that such questions can be addressed.
Strategies to block oxidative stress are effective in animal models of PD, and some encouraging data now exist to suggest that agents that affect mitochondrial function might slow down PD progression. To date, however, most of the promising data on neuroprotective agents in PD animal models have not adequately translated to patients in clinical trials. A lack of biomarkers that would be useful as surrogate end points and as measurements of intended therapeutic effects has markedly hampered trial design and the interpretation of results. We suggest that a better understanding of how mitochondrial function is altered in vivo in brain tissue in PD might be an important step in developing potential PD biomarkers. Rather than using these as diagnostic biomarkers in the conventional sense, they could provide a means of identifying endophenotypes. The susceptibility of an individual to developing PD probably involves a complex interplay of genetic factors, environmental factors, and aging, with the consequence that within a population of individuals with PD, considerable heterogeneity exists with regard to function of specific cellular pathways. A biomarker designed to detect mitochondrial dysfunction would enable an 'enriched' population—those with more-severe defects in mitochondrial metabolism—to be identified, and these individuals could be preferentially enrolled into neuroprotective trials of mitochondrial therapy. This would be a first step towards the rational individualization of neuroprotective regimens.
Importantly, the role of mitochondrial function and oxidative stress in disease pathogenesis is not specific to PD. There is evidence that these pathways are also involved in other neurodegenerative diseases such as Friedreich ataxia, Alzheimer disease, amyotrophic lateral sclerosis, and Huntington disease, among others. Potential exists, therefore, for considerable 'cross-talk' in the development of improved treatments for each of these conditions.

KEY POINTS

  • Defective mitochondrial function and increased oxidative stress have been demonstrated in a subset of people with Parkinson disease (PD)
  • The products of several nuclear genes associated with PD are linked to mitochondrial function
  • Mitochondrial activity can also be affected by environmental factors that possibly contribute to PD pathogenesis
  • Novel therapies that target mitochondrial function and oxidative stress, such as coenzyme Q10, are now in clinical trials to test whether they modify PD progression
Acknowledgments
The authors would like to thank Ms Greta Strong for her outstanding assistance, and Penelope Grossman M.D. for helpful comments on the manuscript. CH acknowledges support of the Daisy and Paul Soros Clinical Scholarship in Neurology.

REFERENCES

  1. Beal MF (2007Mitochondria and neurodegenerationNovartis Found Symp 287: 183–192 | PubMed | ChemPort |
  2. Schapira AH (2008Mitochondria in the aetiology and pathogenesis of Parkinson's diseaseLancet Neurol 7: 97–109 | Article | PubMed | ChemPort |
  3. Schapira AH et al. (1990Mitochondrial complex I deficiency in Parkinson's diseaseJ Neurochem 54: 823–827 | Article | PubMed | ISI | ChemPort |
  4. Parker WD Jr et al. (2008Complex I deficiency in Parkinson's disease frontal cortexBrain Res 1189: 215–218 | Article | PubMed | ADS | ChemPort |
  5. Keeney PM et al. (2006Parkinson's disease brain mitochondrial complex I has oxidatively damaged subunits and is functionally impaired and misassembledJ Neurosci 26: 5256–5264 | Article | PubMed | ChemPort |
  6. Haas RH et al. (1995Low platelet mitochondrial complex I and complex II/III activity in early untreated Parkinson's diseaseAnn Neurol 37: 714–722 | Article | PubMed | ISI | ChemPort |
  7. Penn AM et al. (1995Generalized mitochondrial dysfunction in Parkinson's disease detected by magnetic resonance spectroscopy of muscleNeurology 45: 2097–2099 | PubMed | ChemPort |
  8. Swerdlow RH et al. (1996Origin and functional consequences of the complex I defect in Parkinson's diseaseAnn Neurol 40: 663–671 | Article | PubMed | ISI | ChemPort |
  9. Gu M et al. (1998Mitochondrial DNA transmission of the mitochondrial defect in Parkinson's diseaseAnn Neurol 44: 177–186 | Article | PubMed | ChemPort |
  10. Hu MT et al. (2000Cortical dysfunction in non-demented Parkinson's disease patients: a combined 31P-MRS and 18FDG-PET studyBrain 123: 340–352 | Article | PubMed |
  11. Rango M et al. (2005Parkinson's disease and brain mitochondrial dysfunction: a functional phosphorus magnetic resonance spectroscopy studyJ Cereb Blood Flow Metab 26: 283–290 | Article | ChemPort |
  12. Bowen BC et al. (1995Proton MR spectroscopy of the brain in 14 patients with Parkinson diseaseAJNR Am J Neuroradiol 16: 61–68 | PubMed | ChemPort |
  13. Henchcliffe C et al.: Multinuclear magnetic resonance spectroscopy for in vivoassessment of mitochondrial function in Parkinson's diseaseAnn N Y Acad Sci, in press
  14. Dexter DT et al. (1989Basal lipid peroxidation in substantia nigra is increased in Parkinson's diseaseJ Neurochem 52: 381–389 | Article | PubMed | ISI | ChemPort |
  15. Zhang J et al. (1999Parkinson's disease is associated with oxidative damage to cytoplasmic DNA and RNA in substantia nigra neuronsAm J Pathol 154: 1423–1429 | PubMed | ISI | ChemPort |
  16. Perry TL et al. (1986Idiopathic Parkinson's disease, progressive supranuclear palsy and glutathione metabolism in the substantia nigra of patientsNeurosci Lett 67: 269–274 | Article | PubMed | ISI | ChemPort |
  17. Jenner P (2003Oxidative stress in Parkinson's diseaseAnn Neurol 53 (Suppl 3): S26–S36
  18. Bogdanov M et al. (2008Metabolomic profiling to develop blood biomarkers for Parkinson's diseaseBrain 131: 389–396 | Article | PubMed |
  19. Weisskopf MG et al. (2007Plasma urate and risk of Parkinson's diseaseAm J Epidemiol 166: 561–567 | Article | PubMed | ChemPort |
  20. Green DR et al. (2004The pathophysiology of mitochondrial cell deathScience305: 626–629 | Article | PubMed | ISI | ADS | ChemPort |
  21. Beal MF (1998Excitotoxicity and nitric oxide in Parkinson's disease pathogenesis.Ann Neurol 44 (Suppl 1): S110–S114
  22. Langston JW et al. (1983Chronic parkinsonism in humans due to a product of meperidine-analog synthesisScience 219: 979–980 | Article | PubMed | ISI | ADS | ChemPort |
  23. Betarbet R et al. (2000Chronic systemic pesticide exposure reproduces features of Parkinson's diseaseNat Neurosci 3: 1301–1306 | Article | PubMed | ISI | ChemPort |
  24. Coulom H et al. (2004Chronic exposure to rotenone models sporadic Parkinson's disease in Drosophila melanogasterJ Neurosci 24: 10993–10998 | Article | PubMed | ChemPort |
  25. Cicchetti F et al. (2005Systemic exposure to paraquat and maneb models early Parkinson's disease in young adult ratsNeurobiol Dis 20: 360–371 | Article | PubMed | ChemPort |
  26. Greenamyre JT et al. (1994Antiparkinsonian effects of remacemide hydrochloride, a glutamate antagonist, in rodent and primate models of Parkinson's diseaseAnn Neurol 35: 655–661 | Article | PubMed | ChemPort |
  27. Swerdlow RH et al. (1998Matrilineal inheritance of complex I dysfunction in a multigenerational Parkinson's disease familyAnn Neurol 44: 873–881 | Article | PubMed | ISI | ChemPort |
  28. Wooten GF et al. (1997Maternal inheritance in Parkinson's diseaseAnn Neurol 41: 265–268 | Article | PubMed | ChemPort |
  29. Simon DK et al. (1999Familial multisystem degeneration with parkinsonism associated with the 11778 mitochondrial DNA mutationNeurology 53: 1787–1793 | PubMed | ChemPort |
  30. Luoma P et al. (2004Parkinsonism, premature menopause, and mitochondrial DNA polymerase gamma mutations: clinical and molecular genetic studyLancet 364: 875–882 | Article | PubMed | ISI | ChemPort |
  31. Bender A et al. (2006High levels of mitochondrial DNA deletions in substantia nigra neurons in aging and Parkinson diseaseNat Genet 38: 515–517 | Article | PubMed | ISI | ChemPort |
  32. Srivastava S et al. (2005Double-strand breaks of mouse muscle mtDNA promote large deletions similar to multiple mtDNA deletions in humansHum Mol Genet 14: 893–902 | Article | PubMed | ISI | ChemPort |
  33. Pyle A et al. (2005Mitochondrial DNA haplogroup cluster UKJT reduces the risk of PDAnn Neurol 57: 564–567 | Article | PubMed |
  34. Devi L et al. (2008Mitochondrial import and accumulation of alpha-synuclein impair complex I in human dopaminergic neuronal cultures and Parkinson disease brainJ Biol Chem 283: 9089–9100 | Article | PubMed | ChemPort |
  35. Cole NB et al. (2008Mitochondrial translocation of alpha-synuclein is promoted by intracellular acidificationExp Cell Res 314: 2076–2089 | Article | PubMed | ChemPort |
  36. Shavali S et al. (2008Mitochondrial localization of alpha-synuclein protein in alpha-synuclein overexpressing cellsNeurosci Lett 439: 125–128 | Article | PubMed | ChemPort |
  37. Martin LJ et al. (2006Parkinson's disease alpha-synuclein transgenic mice develop neuronal mitochondrial degeneration and cell deathJ Neurosci 26: 41–50 | Article | PubMed | ChemPort |
  38. Parihar MS et al. (2008Mitochondrial association of alpha-synuclein causes oxidative stressCell Mol Life Sci 65: 1272–1284 | Article | PubMed | ChemPort |
  39. Buttner S et al. (2008Functional mitochondria are required for alpha-synuclein toxicity in aging yeastJ Biol Chem 283: 7554–7560 | Article | PubMed | ChemPort |
  40. Dauer W et al. (2003Parkinson's disease: mechanisms and modelsNeuron 39: 889–909 | Article | PubMed | ISI | ChemPort |
  41. Song DD et al. (2004Enhanced substantia nigra mitochondrial pathology in human alpha-synuclein transgenic mice after treatment with MPTPExp Neurol 186: 158–172 | Article | PubMed | ISI | ChemPort |
  42. Kuroda Y et al. (2006Parkin enhances mitochondrial biogenesis in proliferating cells.Hum Mol Genet 15: 883–895 | Article | PubMed | ChemPort |
  43. Greene JC et al. (2003Mitochondrial pathology and apoptotic muscle degeneration in Drosophila parkin mutantsProc Natl Acad Sci USA 100: 4078–4083 | Article | PubMed | ADS | ChemPort |
  44. Pesah Y et al. (2004Drosophila parkin mutants have decreased mass and cell size and increased sensitivity to oxygen radical stressDevelopment 131: 2183–2194 | Article | PubMed | ISI | ChemPort |
  45. Palacino JJ et al. (2004Mitochondrial dysfunction and oxidative damage in parkin-deficient miceJ Biol Chem 279: 18614–18622 | Article | PubMed | ISI | ChemPort |
  46. Muftuoglu M et al. (2004Mitochondrial complex I and IV activities in leukocytes from patients with parkin mutationsMov Disord 19: 544–548 | Article | PubMed |
  47. Poole AC et al. (2008The PINK1/Parkin pathway regulates mitochondrial morphologyProc Natl Acad Sci USA 105: 1638–1643 | Article | PubMed | ADS | ChemPort |
  48. Silvestri L et al. (2005Mitochondrial import and enzymatic activity of PINK1 mutants associated to recessive parkinsonismHum Mol Genet 14: 3477–3492 | Article | PubMed | ISI | ChemPort |
  49. Pridgeon JW et al. (2007PINK1 protects against oxidative stress by phosphorylating mitochondrial chaperone TRAP1PLoS Biol 5: e172 | Article | PubMed | ChemPort |
  50. Hoepken HH et al. (2007Mitochondrial dysfunction, peroxidation damage and changes in glutathione metabolism in PARK6Neurobiol Dis 25: 401–411 | Article | PubMed | ChemPort |
  51. Clark IE et al. (2006Drosophila Pink1 is required for mitochondrial function and interacts genetically with parkinNature 441: 1162–1166 | Article | PubMed | ISI | ADS | ChemPort |
  52. Yang Y et al. (2008Pink1 regulates mitochondrial dynamics through interaction with the fission/fusion machineryProc Natl Acad Sci USA 105: 7070–7075 | Article | PubMed | ADS |
  53. Petit A et al. (2005Wild-type PINK1 prevents basal and induced neuronal apoptosis, a protective effect abrogated by Parkinson disease-related mutationsJ Biol Chem 280: 34025–34032 | Article | PubMed | ISI | ChemPort |
  54. Wood-Kaczmar A et al. (2008PINK1 is necessary for long term survival and mitochondrial function in human dopaminergic neuronsPLoS ONE 3: e2455 | Article | PubMed | ChemPort |
  55. Exner N et al. (2007Loss-of-function of human PINK1 results in mitochondrial pathology and can be rescued by parkinJ Neurosci 27: 12413–12418 | Article | PubMed | ChemPort |
  56. Bonifati V et al. (2003Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonismScience 299: 256–259 | Article | PubMed | ISI | ADS | ChemPort |
  57. Yokota T et al. (2003Down regulation of DJ-1 enhances cell death by oxidative stress, ER stress, and proteasome inhibitionBiochem Biophys Res Commun 312: 1342–1348 | Article | PubMed | ISI | ChemPort |
  58. Zhang L et al. (2005Mitochondrial localization of the Parkinson's disease related protein DJ-1: implications for pathogenesisHum Mol Genet 14: 2063–2073 | Article | PubMed | ISI | ChemPort |
  59. Canet-Aviles RM et al. (2004The Parkinson's disease protein DJ-1 is neuroprotective due to cysteine-sulfinic acid-driven mitochondrial localizationProc Natl Acad Sci USA 101: 9103–9108 | Article | PubMed | ADS | ChemPort |
  60. Meulener M et al. (2005Drosophila DJ-1 mutants are selectively sensitive to environmental toxins associated with Parkinson's diseaseCurr Biol 15: 1572–1577 | Article | PubMed | ISI | ChemPort |
  61. Park J et al. (2005Drosophila DJ-1 mutants show oxidative stress-sensitive locomotive dysfunctionGene 361: 133–139 | Article | PubMed | ISI | ChemPort |
  62. Yang Y et al. (2005Inactivation of Drosophila DJ-1 leads to impairments of oxidative stress response and phosphatidylinositol 3-kinase/Akt signalingProc Natl Acad Sci USA 102: 13670–13675 | Article | PubMed | ADS | ChemPort |
  63. Shendelman S et al. (2004DJ-1 is a redox-dependent molecular chaperone that inhibits alpha-synuclein aggregate formationPLoS Biol 2: e362 | Article | PubMed | ChemPort |
  64. Meulener MC et al. (2005DJ-1 is present in a large molecular complex in human brain tissue and interacts with alpha-synucleinJ Neurochem 93: 1524–1532 | Article | PubMed | ChemPort |
  65. West AB et al. (2005Parkinson's disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activityProc Natl Acad Sci USA 102: 16842–16847 | Article | PubMed | ADS | ChemPort |
  66. Martins LM et al. (2004Neuroprotective role of the Reaper-related serine protease HtrA2/Omi revealed by targeted deletion in miceMol Cell Biol 24: 9848–9862 | Article | PubMed | ISI | ChemPort |
  67. Strauss KM et al. (2005Loss of function mutations in the gene encoding Omi/HtrA2 in Parkinson's diseaseHum Mol Genet 14: 2099–2111 | Article | PubMed | ISI | ChemPort |
  68. Ravagnan L et al. (2002Mitochondria, the killer organelles and their weaponsJ Cell Physiol 192: 131–137 | Article | PubMed | ISI | ChemPort |
  69. Plun-Favreau H et al. (2007The mitochondrial protease HtrA2 is regulated by Parkinson's disease-associated kinase PINK1Nat Cell Biol 9: 1243–1252 | Article | PubMed | ChemPort |
  70. Simon-Sanchez J et al. (2008Sequencing analysis of OMI/HTRA2 shows previously reported pathogenic mutations in neurologically normal controlsHum Mol Genet 17: 1988–1993 | Article | PubMed | ChemPort |
  71. Beal MF (2004Mitochondrial dysfunction and oxidative damage in Alzheimer's and Parkinson's diseases and coenzyme Q10 as a potential treatmentJ Bioenerg Biomembr 36: 381–386 | Article | PubMed | ChemPort |
  72. McCarthy S et al. (2004Paraquat induces oxidative stress and neuronal cell death; neuroprotection by water-soluble coenzyme Q10Toxicol Appl Pharmacol 201: 21–31 | Article | PubMed | ISI | ChemPort |
  73. Menke T et al. (2003Coenzyme Q10 reduces the toxicity of rotenone in neuronal cultures by preserving the mitochondrial membrane potentialBiofactors 18: 65–72 | PubMed | ISI | ChemPort |
  74. Beal MF et al. (1998Coenzyme Q10 attenuates the 1-methyl-4-phenyl-1,2,3,tetrahydropyridine (MPTP) induced loss of striatal dopamine and dopaminergic axons in aged miceBrain Res 783: 109–114 | Article | PubMed | ISI | ChemPort |
  75. Horvath TL et al. (2003Coenzyme Q induces nigral mitochondrial uncoupling and prevents nigral cell loss in a primate model of Parkinson's diseaseEndocrinology144: 2757–2760 | Article | PubMed | ISI | ChemPort |
  76. Stamelou M et al. (2008Short-term effects of coenzyme Q10 in progressive supranuclear palsy: a randomized, placebo-controlled trialMov Disord 23: 942–949 | Article | PubMed |
  77. Shults CW et al. (2002Effects of coenzyme Q10 in early Parkinson disease: evidence of slowing of the functional declineArch Neurol 59: 1541–1550 | Article | PubMed | ISI |
  78. The NINDS NET-PD Investigators (2007A randomized clinical trial of coenzyme Q10 and GPI-1485 in early Parkinson diseaseNeurology 68: 20–28
  79. The NINDS NET-PD Investigators (2006A randomized, double-blind, futility clinical trial of creatine and minocycline in early Parkinson diseaseNeurology 66: 664–671
  80. Klivenyi P et al. (2006Mice lacking alpha-synuclein are resistant to mitochondrial toxinsNeurobiol Dis 21: 541–548 | Article | PubMed | ChemPort |
  81. Parkinson Study Group (2004A controlled, randomized, delayed-start study of rasagiline in early Parkinson diseaseArch Neurol 61: 561–566 | PubMed | ISI |
  82. Lagouge M et al. (2006Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1alphaCell 127: 1109–1122 | Article | PubMed | ISI | ChemPort |
  83. Lu KT et al. (2008Neuroprotective effects of resveratrol on MPTP-induced neuron loss mediated by free radical scavengingJ Agric Food Chem 56: 6910–6913 | Article | PubMed | ChemPort |
  84. Ko L et al. (2000Sensitization of neuronal cells to oxidative stress with mutated human alpha-synucleinJ Neurochem 75: 2546–2554 | Article | PubMed | ChemPort |
  85. Ostrerova-Golts N et al. (2000The A53T alpha-synuclein mutation increases iron-dependent aggregation and toxicityJ Neurosci 20: 6048–6054 | PubMed | ISI | ChemPort |
  86. Smith WW et al. (2005Leucine-rich repeat kinase 2 (LRRK2) interacts with parkin, and mutant LRRK2 induces neuronal degenerationProc Natl Acad Sci USA 102: 18676–18681 | Article | PubMed | ChemPort |
  87. Paxinou E et al. (2001Induction of alpha-synuclein aggregation by intracellular nitrative insultJ Neurosci 21: 8053–8061 | PubMed | ISI | ChemPort |
  88. Darios F et al. (2003Parkin prevents mitochondrial swelling and cytochrome c release in mitochondria-dependent cell deathHum Mol Genet 12: 517–526 | Article | PubMed | ISI | ChemPort |
  89. Park J et al. (2006Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkinNature 441: 1157–1161 | Article | PubMed | ISI | ADS | ChemPort |
  90. Gandhi S et al. (2006PINK1 protein in normal human brain and Parkinson's disease.Brain 129: 1720–1731 | Article | PubMed | ISI | ChemPort |
  91. Taira T et al. (2004DJ-1 has a role in antioxidative stress to prevent cell death.EMBO Rep 5: 213–218 | Article | PubMed | ISI | ChemPort |
  92. Choi J et al. (2006Oxidative damage of DJ-1 is linked to sporadic Parkinson and Alzheimer diseasesJ Biol Chem 281: 10816–10824 | Article | PubMed | ChemPort |
  93. Menzies FM et al. (2005Roles of Drosophila DJ-1 in survival of dopaminergic neurons and oxidative stressCurr Biol 15: 1578–1582 | Article | PubMed | ISI | ChemPort |


    http://www.nature.com/nrneurol/journal/v4/n11/full/ncpneuro0924.html
________________


Candida albicans -sieni käyttäytyy täsmälleen kuten ns. "syöpäkasvain" 

(geenistö Genome Inventory (as of Mar 27, 2014), metabolia, germ tubes ja metastoituminen)

Hiivasienitulehdus on candida-hiivasienen aiheuttama tulehdus.
Hiivatulehduksen voi aiheuttaa allergia, tartunta, liika hygienia, hiostavat siteet,
liika makean nauttiminen, antibioottikuuri tai stressi.

Estrogeeniellä on raportoitu olevan merkittävä vaikutus monimuotoisten ja kaksimuotoisten sienten leviämiseen.

Systeemiset hiiva-infektioiden aiheuttamat sairaudet ja ongelmat ovat melko kirjavia, sekä hengenvaarallisia.
Syynä tähän ovat monet erilaiset sienet, joita voit mahdollisesti saada elintarvikkeista, ympäristöstä ja Candida -tartunnasta. Nämä sienet kykenevät vapauttamaan yli 100 tunnettua mykotoksiiniä (homemyrkkyjä).
Mykotoksiinit voivat vaikuttaa kehon eri osiin ja näennäisesti toisiinsa liittymättömillä tavoilla.
Esimerkiksi yksi henkilö voi saada aikuisen aknen, seuraava niveltulehduksen ja toinen henkilön sydänsairauden, sienet ja niiden mykotoksiinit voi aiheuttaa kaikkia näitä sairauksia. Systeemiset hiiva-infektiot aiheuttaa tavallisesti Candida albicans tai Candida tropicalis, suoliston kannan liikakasvusta, vaikka monet muut yhteiset sienet voivat aiheuttaa tai jäljitellä samoja näiden sairauksien oireita ja ehtoja.
Ne voivat myös johtua ilman homeitiöistä kuten Asperigillus, joka on hyvin yleinen maaseudun ja kaupunkien yhteisöissä. Ihmiset voivat altistua työpaikalla ja kotona valtaville määrille tällaisia ilmassa leijuvia sieniä (itiöitä), jotka aiheuttavat monia hengitystieinfektioita ja allergioita vuosittain.


Candida rakenteen ymmärtäminen, hiiva ja sienet 

Saadaksemme onnistuneen hoidon, on meidän ymmärrettävä Candidan, -hiivan ja -sienen rakenne. 

Se todellakin on oma elämänmuotossa, esiintyen osittain kasvina, eläimenä ja bakteerina luonnossa. Juuri tämä kyky sopeutua ja muuttaa muotoaan, tai sen muodonmuutos, joka aiheuttaa sen olevan niin vaikea hävittää ihmisen kehosta. Kun ymmärrämme sen koostumuksen, voimme onnistuneesti hoitaa sen luonnollisilla menetelmillä elimistöä vahingoittamatta, niin että sillä ei ole vastustuskykyä.

Sienten rakenne
Sienet kuuluvat organismien ryhmään joita kutsutaan eukaryooteiksi, joilla on monimutkaiset solurakenteet ja joissa soluilla on ydin, tuma tai nukleoidi.  Eläimet ja kasvit jakavat tämän tuman erilaisten solutyyppien kesken, bakteerit eivät.

Sienten soluseinämä koostuu mannoproteiineista ja kitiinistä, jotka itse
koostuvat selluloosasta ja tärkkelyksestä. Kitiini on luonteeltaan vihannes
ja antaa solulle sen jäykkyyden, (vrt. hyönteiset ja ravut).
Soluseinämä on lähellä samaa komposiitiota kuin vihannekset, joka saa
e nousemaan ja kasvamaan kurkottaen kohti auringonvaloa. S
e koostuu yhden solun paksuisista filamenteista, säikeistä, joita usein
kutsutaan rihmastoksi, ollen hyvin samanlaisia kuin kasvien juuret,
koska sienet saavat ravintonsa (glykoosin) näistä rihmastoista.


Nämä juuret, rihmastot, voivat helpohkosti puhkaista ihmisen suolen seinämät ja ihmiskehon kudokset ja luoda esim. vuotavan suolen oireyhtymän ja muita kielteisiä vaikutuksia.
KATSO VIDEO -

Candida albicans on sieni, joka elää ja on olemassa luonnostaan ihmisen ohutsuolessa

Solun sisällä on kalvo, membraani, joka koostuu proteiineista ja rasvoista, tunnetaan myös lipoproteiinina, joka on yhteinen, samanlainen solurakenne eläimillä ja ihmisillä.
Keskellä on ydin, nukleoidi ja yhdessä lipoproteiinin kalvon alla on ”vihannes” -soluseinä, joka on mahdollistanut sienten luokittelun eläinkuntaan kuuluvaksi, vaikka ne lisääntyvät suvuttomasti, monissa tapauksissa tuottamallaitiöitä, germ tubes, (kts. germination).
Ne voivat myös paritella muiden sienten kun kaksi rihmastoa kohtaavat, jotka voi tuottaa kaksi monitumaista pallon muotoista solua, jotka liittyvät yhteen muodostaakseen uuden ytimen. Suvuton jakautuminen on hyvin samankaltainen kuin bakteereilla, jotka yksinkertaisesti jakautuvat ja jokainen solu sisältää samoja kromosomeja vaikka bakteerien ei ole ydintä.

Sienten itiöillä on siis kyky jakautua.

Candidan ja hiivan rakenne

 Joskus hiiva asuu ihmiskehon suolistossa (sisäympäristössä), eikä yleensä aiheuta ongelmia.
Mutta johtuen erilaisista ympäristötekijöistä se siirtyy yksisoluisesta, tai hiiva muodosta invasiiviseen monisoluiseen muotoon, joka tunnetaan Candida: na ja alkaa lisääntyä erittäin nopeasti.

Levitessään se rakentaa suojaksen helicobacter pylorin kaltaisen, biokalvon (biofilmi).

Näiden biokalvojen paksuus voi vaihdella 25-450 mikrometriä
ja niitä alkaa ilmetä kolonisaation ensimmäisen 24 tunnin
kuluessa

Biokalvo koostuu selluloosasta, joka on kasvien rakenneosa.
Polynukleotidit ovat ensisijaisesti sen DNA ja RNA materiaalia,
polypeptidit, jotka ovat proteiineja, sekä polysakkarideja, jotka
ovat hiilihydraatteja . Biokalvo sisältää myös fibrinogeenia,
jotka ovat samoja materiaaleja, jotka elimistö käyttää veressä
haavojen hyytymiseen. 
Nämä materiaalit on kiinnitetty toisiinsa lignandeilla, joilla on tahmeutta, samoja ominaisuuksia kuin vehnän lektiineillä.

Yksi rakenne invasiivisen Candidan kasvaessa on pehmeä valkoinen kolonisaatio, ja toinen kasvaa sauvamaisesti harmaalla alustalla. Tämä voi olla samaa lajia Candida, ja se voi sopeutumismenetelmänään vaihtaa muotoaan. 
Toinen Candida -kannan tiedetään käyvän läpi muodonvaihtoa, tuottaen seitsemää erilaista kasvualustaa.
Tämä vaihtokyky on palautuva ja periytyy sukupolvelta toiselle. 

Tutkimus osoitti myös, että rakenteelliset kromosomien
uudelleenjärjestelyt ovat eräs tapa geneettisen
monimuotoisuuden säilyttämiseksi ja on tämän sienen
sopeutumisstrategia. 

 Candida rihmasto monistuu suvullisesti, (reproduce sexually),
koska ytimellä on kaksi kopiota kromosomeista, luodakseen
kaksi erillistä solua sporangialla, kun ”mies” ja ”nainen”
kohtaavat.  
- Jos nyt voisit kutsua sitä mieheksi ja naiseksi,
eivät todellakaan ole, ennemminkin kaksi solua jakaantuu itsenäisesti, liittyäkseen ja luodakseen uusia soluja .

Hiiva on yksisoluinen rakenne Candida albicans: ista, ennen kuin siitä tulee monisoluisnen Candida, joita on luokiteltu yli 1000 lajia . Hiiva voi elää joko anaerobisesti tai aerobisesti.
Ilman happea ne tuottavat energiaa muuntamalla sokerit (maksan tuottaman glykoosin) hiilidioksidiksi ja etanoliksi, jos ihmettelet, miksi sinulla on aivot kuin sumussa? 
Ne pystyvät lisääntymään suvuttomasti tai suvulliisesti ja suvuttomasti lisääntyessään solu jakautuu uutena alkuunsa (budding) ja tuottaa uusia hiivasoluja .

Sienet ovat melko kiehtovia.
Sienet ovat elämänmuoto luonnossa, joka on kasvi, eläin ja bakteeri. Soluseinät koostuvat kasviaineista ja proteiineista, kalvo ja ydin ovat proteiineja ja rasvoja kuin eläimillä, ja se lisääntyy kuin bakteerit, monissa tapauksissa suvuttomasti kantaessaan vain yhden kromosomit lajista riippuen. 
Se kloonautuu itsenäisesti ja sillä on kyky muodonmuutokseen ottaen 7 erilaista muotoa. Se voi uudelleenjärjestää kromosominsa mukautuvalla strategialla varmistaen selviytymisen.
- Ei ihme, että siitä on niin vaikea päästä eroon !


http://graviolateam.blogspot.fi/2014/12/candida-albicans-sieni-kayttaytyy.html


http://graviola.fi/Candida-Genome-Database/



Ei kommentteja:

Lähetä kommentti

You are welcome to show your opinion here!