keskiviikko 16. syyskuuta 2020

Rogue' Chinese Virologist Publishes "Smoking Gun" Evidence COVID-19 Created In Lab


'Rogue' Chinese Virologist Joins Twitter, Publishes "Smoking Gun" Evidence COVID-19 Created In Lab

On Saturday we reported that Dr. Li-Meng Yan - a Chinese virologist (MD, PhD) who fled the country, leaving her job at a prestigious Hong Kong university - appeared last week on British television where she claimed SARS-CoV-2, the virus which causes COVID-19, was created by Chinese scientists in a lab.


On Sunday, Li-Meng joined Twitter - and on Monday, just hours ago, she tweeted a link to a paper she co-authored with three other Chinese scientists titled:

Unusual Features of the SARS-CoV-2 Genome Suggesting Sophisticated Laboratory Modification Rather Than Natural Evolution and Delineation of Its Probable Synthetic Route

https://archive.vn/wip/KxJJr

She also posted a link to her credentials on ResearchGate, revealing her (prior?) affiliation with The University of Hong Kong and 13 publications which have been cited 557 times.

https://archive.vn/wip/GD3hV


Cutting to the chase:

"The evidence shows that SARS-CoV-2 should be a laboratory product created by using bat coronaviruses ZC45 and/or ZXC21 as a template and/or backbone. Building upon the evidence, we further postulate a synthetic route for SARS-CoV-2, demonstrating that the laboratory-creation of this coronavirus is convenient and can be accomplished in approximately six months.

Here is the extended punchline:

The receptor-binding motif of SARS-CoV-2 Spike cannot be born from nature and should have been created through genetic engineering.

The Spike proteins decorate the exterior of the coronavirus particles. They play an important role in infection as they mediate the interaction with host cell receptors and thereby help determine the host range and tissue tropism of the virus. The Spike protein is split into two halves (Figure 3). The front or N-terminal half is named S1, which is fully responsible for binding the host receptor. In both SARS-CoV and SARS-CoV-2 infections, the host cell receptor is hACE2. Within S1, a segment of around 70 amino acids makes direct contacts with hACE2 and is correspondingly named the receptor-binding motif (RBM) (Figure 3C). In SARS-CoV and SARS-CoV-2, the RBM fully determines the interaction with hACE2. The C-terminal half of the Spike protein is named S2. The main function of S2 includes maintaining trimer formation and, upon successive protease cleavages at the S1/S2 junction and a downstream S2’ position, mediating membrane fusion to enable cellular entry of the virus.

Similar to what is observed for other viral proteins, S2 of SARS-CoV-2 shares a high sequence identity (95%) with S2 of ZC45/ZXC21. In stark contrast, between SARS-CoV-2 and ZC45/ZXC21, the S1 protein, which dictates which host (human or bat) the virus can infect, is much less conserved with the amino acid sequence identity being only 69%.

Figure 4 shows the sequence alignment of the Spike proteins from six β coronaviruses. Two are viruses isolated from the current pandemic (Wuhan-Hu-1, 2019-nCoV_USA-AZ1); two are the suspected template viruses (Bat_CoV_ZC45, Bat_CoV_ZXC21); two are SARS coronaviruses (SARS_GZ02, SARS). The RBM is highlighted in between two orange lines. Clearly, despite the high sequence identity for the overall genomes, the RBM of SARS-CoV-2 differs significantly from those of ZC45 and ZXC21. Intriguingly, the RBM of SARS-CoV-2 resembles, on a great deal, the RBM of SARS Spike. Although this is not an exact “copy and paste”, careful examination of the Spike-hACE2 structures37,38 reveals that all residues essential for either hACE2 binding or protein folding (orange sticks in Figure 3C and what is highlighted by red short lines in Figure 4) are “kept”.

Most of these essential residues are precisely preserved, including those involved in disulfide bond formation (C467, C474) and electrostatic interactions (R444, E452, R453, D454), which are pivotal for the structural integrity of the RBM (Figure 3C and 4). The few changes within the group of essential residues are almost exclusively hydrophobic “substitutions” (I428àL, L443àF, F460àY, L472àF, Y484àQ), which should not affect either protein folding or the hACE2-interaction. At the same time, majority of the amino acid residues that are non-essential have “mutated” (Figure 4, RBM residues not labeled with short red lines). Judging from this sequence analysis alone, we were convinced early on that not only would the SARS-CoV-2 Spike protein bind hACE2 but also the binding would resemble, precisely, that between the original SARS Spike protein and hACE223. Recent structural work has confirmed our prediction.

As elaborated below, the way that SARS-CoV-2 RBM resembles SARS-CoV RBM and the overall sequence conservation pattern between SARS-CoV-2 and ZC45/ZXC21 are highly unusual. Collectively, this suggests that portions of the SARS-CoV-2 genome have not been derived from natural quasi-species viral particle evolution.

The paper then makes two critical observations for those who claim that SARS-CoV-2 has a natural origin: its RBM could have only been acquired in one of the two possible routes:
1) an ancient recombination event followed by convergent evolution or
2) a natural recombination event that occurred fairly recently.

She first dismisses option 1:

"this convergent evolution process would also result in the accumulation of a large amount of mutations in other parts of the genome, rendering the overall sequence identity relatively low. The high sequence identity between SARS-CoV-2 and ZC45/ZXC21 on various proteins (94-100% identity) do not support this scenario and, therefore, clearly indicates that SARS-CoV- 2 carrying such an RBM cannot come from a ZC45/ZXC21-like bat coronavirus through this convergent evolutionary route."

She then dismisses option 2:

In the second scenario, the ZC45/ZXC21-like coronavirus would have to have recently recombined and swapped its RBM with another coronavirus that had successfully adapted to bind an animal ACE2 highly homologous to hACE2. The likelihood of such an event depends, in part, on the general requirements of natural recombination: 1) that the two different viruses share significant sequence similarity; 2) that they must co-infect and be present in the same cell of the same animal; 3) that the recombinant virus would not be cleared by the host or make the host extinct; 4) that the recombinant virus eventually would have to become stable and transmissible within the host species.

In regard to this recent recombination scenario, the animal reservoir could not be bats because the ACE2 proteins in bats are not homologous enough to hACE2 and therefore the adaption would not be able to yield an RBM sequence as seen in SARS-CoV-2. This animal reservoir also could not be humans as the ZC45/ZXC21-like coronavirus would not be able to infect humans. In addition, there has been no evidence of any SARS-CoV-2 or SARS-CoV-2-like virus circulating in the human population prior to late 2019. Intriguingly, according to a recent bioinformatics study, SARS-CoV-2 was well-adapted for humans since the start of the outbreak.

Which leaves just one option:

Only one other possibility of natural evolution remains, which is that the ZC45/ZXC21-like virus and a coronavirus containing a SARS-like RBM could have recombined in an intermediate host where the ACE2 protein is homologous to hACE2. Several laboratories have reported that some of the Sunda pangolins smuggled into China from Malaysia carried coronaviruses, the receptor-binding domain (RBD) of which is almost identical to that of SARS-CoV-227-29,31. They then went on to suggest that pangolins are the likely intermediate host for SARS-CoV-227-29,31. However, recent independent reports have found significant flaws in this data40-42. Furthermore, contrary to these reports27-29,31, no coronaviruses have been detected in Sunda pangolin samples collected for over a decade in Malaysia and Sabah between 2009 and 201943. A recent study also showed that the RBD, which is shared between SARS-CoV-2 and the reported pangolin coronaviruses, binds to hACE2 ten times stronger than to the pangolin ACE22, further dismissing pangolins as the possible intermediate host. Finally, an in silico study, while echoing the notion that pangolins are not likely an intermediate host, also indicated that none of the animal ACE2 proteins examined in their study exhibited more favorable binding potential to the SARS-CoV-2 Spike protein than hACE2 did. This last study virtually exempted all animals from their suspected roles as an intermediate host, which is consistent with the observation that SARS-CoV-2 was well-adapted for humans from the start of the outbreak. This is significant because these findings collectively suggest that no intermediate host seems to exist for SARS-CoV-2, which at the very least diminishes the possibility of a recombinant event occurring in an intermediate host.

Fast-forwarding to the smoking gun:

Given that RBM fully dictates hACE2-binding and that the SARS RBM-hACE2 binding was fully characterized by high-resolution structures (Figure 3)37,38, this RBM-only swap would not be any riskier than the full Spike swap. In fact, the feasibility of this RBM-swap strategy has been proven. In 2008, Dr. Zhengli Shi’s group swapped a SARS RBM into the Spike proteins of several SARS-like bat coronaviruses after introducing a restriction site into a codon-optimized spike gene (Figure 5C). They then validated the binding of the resulted chimeric Spike proteins with hACE2. Furthermore, in a recent publication, the RBM of SARS-CoV-2 was swapped into the receptor-binding domain (RBD) of SARSCoV, resulting in a chimeric RBD fully functional in binding hACE2 (Figure 5C)39. Strikingly, in both cases, the manipulated RBM segments resemble almost exactly the RBM defined by the positions of the EcoRI and BstEII sites (Figure 5C). Although cloning details are lacking in both publications39,47, it is conceivable that the actual restriction sites may vary depending on the spike gene receiving the RBM insertion as well as the convenience in introducing unique restriction site(s) in regions of interest. It is noteworthy that the corresponding author of this recent publication, Dr. Fang Li, has been an active collaborator of Dr. Zhengli Shi since 201049-53. Dr. Li was the first person in the world to have structurally elucidated the binding between SARS-CoV RBD and hACE238 and has been the leading expert in the structural understanding of Spike-ACE2 interactions. The striking finding of EcoRI and BstEII  restriction sites at either end of the SARS-CoV-2 RBM, respectively, and the fact that the same RBM region has been swapped both by Dr. Shi and by her long-term collaborator, respectively, using restriction enzyme digestion methods are unlikely a coincidence. Rather, it is the smoking gun proving that the RBM/Spike of SARS-CoV-2 is a product of genetic manipulation."

It gets better, because the Chinese scientists then presciently tried to cover their tracks:

Although it may be convenient to copy the exact sequence of SARS RBM, it would be too clear a sign of artificial design and manipulation. The more deceiving approach would be to change a few nonessential residues, while preserving the ones critical for binding. This design could be well-guided by the high-resolution structures (Figure 3)37,38. This way, when the overall sequence of the RBM would appear to be more distinct from that of the SARS RBM, the hACE2-binding ability would be well-preserved. We believe that all of the crucial residues (residues labeled with red sticks in Figure 4, which are the same residues shown in sticks in Figure 3C) should have been “kept”. As described earlier, while some should be direct preservation, some should have been switched to residues with similar properties, which would not disrupt hACE2-binding and may even strengthen the association further [ZH: i.e., the virus was weaponized and enchanced]. Importantly, changes might have been made intentionally at non-essential sites, making it less like a “copy and paste” of the SARS RBM.

Yan also discusses the infamous furin-cleavage site:

... a close examination of the nucleotide sequence of the furin-cleavage site in SARS-CoV-2 spike has revealed that the two consecutive Arg residues within the inserted sequence (- PRRA-) are both coded by the rare codon CGG (least used codon for Arg in SARS-CoV-2) (Figure 7).

In fact, this CGGCGG arrangement is the only instance found in the SARS-CoV-2 genome where this rare codon is used in tandem. This observation strongly suggests that this furin-cleavage site should be a result of genetic engineering. Adding to the suspicion, a FauI restriction site is formulated by the codon choices here, suggesting the possibility that the restriction fragment length polymorphism, a technique that a WIV lab is proficient at, could have been involved. There, the fragmentation pattern resulted from FauI digestion could be used to monitor the preservation of the furin-cleavage site in Spike as this furin-cleavage site is prone to deletions in vitro. Specifically, RT-PCR on the spike gene of the recovered viruses from cell cultures or laboratory animals could be carried out, the product of which would be subjected to FauI digestion. Viruses retaining or losing the furin-cleavage site would then yield distinct patterns, allowing convenient tracking of the virus(es) of interest.

And another critical allegation: once again, the Wuhan Researchers were doing everything in their power to weaponize and boost the "enhancement of the infectivity and pathogenicity of the laboratory-made coronavirus":

The evidence collectively suggests that the furin-cleavage site in the SARS-CoV-2 Spike protein may not have come from nature and could be the result of genetic manipulation. The purpose of this manipulation could have been to assess any potential enhancement of the infectivity and pathogenicity of the laboratory-made coronavirus.

Summarizing the above:


Evidence presented in this part reveals that certain aspects of the SARS-CoV-2 genome are extremely difficult to reconcile to being a result of natural evolution. The alternative theory we suggest is that the virus may have been created by using ZC45/ZXC21 bat coronavirus(es) as the backbone and/or template. The Spike protein, especially the RBM within it, should have been artificially manipulated, upon which the virus has acquired the ability to bind hACE2 and infect humans. This is supported by the finding of a unique restriction enzyme digestion site at either end of the RBM. An unusual furin-cleavage site may have been introduced and inserted at the S1/S2 junction of the Spike protein, which contributes to the increased virulence and pathogenicity of the virus.

These transformations have then staged the SARS CoV-2 virus to eventually become a highly-transmissible, onset-hidden, lethal, sequelae-unclear, and massively disruptive pathogen.

Evidently, the possibility that SARS-CoV-2 could have been created through gain-of-function manipulations at the WIV is significant and should be investigated thoroughly and independently.

Finally, those curious how the virus could have been created synthetically in Wuhan, here is a diagram proposed by Dr. Yan explaining all the required steps:

Her full paper is below:

And for those who missed it, here's Li-Meng's interview on UK television:


As a reminder, Zero Hedge was banned from Twitter on Jan 31 for making just this allegation, following a hit-piece written by an alleged pedophile (who was later fired for plagiarism) and countless so-called "scientists" screaming that our take was fake news and nothing but propaganda. Five months later Twitter admitted it had made a mistake, stating "we made an error in our enforcement action in this case."

https://www.zerohedge.com/medical/rogue-chinese-virologist-joins-twitter-publishes-evidence-covid-19-created-lab


___


Wow Chinese Virologist Dr. Li-Meng Yan Blows Whistle on China “Manufacturing” COVID-19

In a stunning segment on Tucker Carlson tonight, Chinese virologist Dr. Li-Meng Yan explains how China actually manufactured the COVID-19 virus by weaponizing and modifying the genetic sequence within the China bat virus.

According to Dr. Li-Meng Yan the virus was specifically created and released by China.



https://theconservativetreehouse.com/2020/09/15/wow-chinese-virologist-dr-li-meng-yan-blows-whistle-on-china-manufacturing-covid-19/

__
eof



lauantai 12. syyskuuta 2020

Contradicting statements cast doubts on Chinese raw data

On February 3rd, 2020, researchers at the Wuhan Institute of Virology published their first article on the SARS-CoV-2 virus.


Contradicting statements cast doubts on Chinese raw data


 

The RaTG13 virus shares a 96,2 sequence identity with SARS-CoV-2. It was collected from Rhinolophus affinis an abandoned mineshaft in 2013 after several miners contracted a mysterious lung disease. Naturalis Biodiversity Center/Wikimedia Commons

The virus most similar to SARS-CoV-2 was discovered in a mineshaft in 2013 after several contracted a mysterious lung disease. Wuhan's Institute of Virology first claimed that this virus was not sequenced until 2020, but now head researcher Shi Zhengli offers another explanation.

PUBLISERT Torsdag 10. september 2020 - 13:28 SIST OPPDATERT Torsdag 10. september 2020 - 14:34


On February 3rd, 2020, researchers at the Wuhan Institute of Virology published their first article on the SARS-CoV-2 virus.

In the article “A pneumonia outbreak associated with a new coronavirus of probable bat origin”, the Wuhan researchers Zhou et al. compare the SARS-CoV-2 virus with other known viruses. Zhou et al also published the sequence of a hitherto completely unknown virus, called RaTG13, which is 96.2 percent identical to SARS-CoV-2 virus.

The article has already been cited 3261 times, and is undoubtedly one of the most influential scientific publications in 2020.

Among the articles that builds upon the research published by the Wuhan Institute of Virology, and more specifically the RaTG13 sequence, is the article “The proximal origin of SARS-CoV-2” by Kristian Andersen et al. This article is one of the most influential scientific articles arguing for a natural origin for the novel coronavirus. Andersen’s article is cited over 400 times so far in 2020.

The trace back to an abandoned mineshaft

However, some researchers are in doubt as to whether the raw data this research builds upon is credible. At the heart of the issue is the RaTG13 virus, and whether the researchers in Wuhan have provided sufficient and correct information about the sequencing of the virus.

Shortly after publication, questions about the hitherto unknown virus began to surface. On May 19th, the Indian researchers Monali C. Rahalkar and Rahul A. Bahulikar published an article claiming that the RaTG13 virus is identical to a virus sample named BtCoV/4991, which was uploaded by the Wuhan researchers in 2016.

The BtCoV/4991 virus sample consists only of 370 fragments out of the more than 30,000 positions that completes a SARS-coronavirus genome. The 370 fragments in the BtCov/4991 virus sample make a 98.9 percent match with the certain positions in the genome of the SARS-CoV-2 virus, deviating only by four out of 370 positions.

Rahalkar and Bahulikar criticize the researchers in Wuhan for not making it clear in their article that the RaTG13 virus is taken from BtCoV/4991 sample, and for failing to mention that this sample was collected from an abandoned mineshaft. This is of particular interest since six workers from this mineshaft were hospitalized after having contracted an unknown disease that killed three of them.
An unknown virus and a lung disease

Admittedly, chief researcher Shi Zhengli, at the Wuhan Institute of Virology, has mentioned this incident earlier. In an interview with The Scientific American, she explains how her team of researchers were called to investigate the mine after the incident with the sick workers.

According to Shi’s explanation, the investigation of the events concluded that the disease was caused by fungi.

However, a master’s thesis written in 2013 by one of the doctors who assisted in the treatment of the miners, casts doubt on Shi Zhengli’s explanation.


The thesis describes a course of the disease very similar to what patients who are now diagnosed with Covid-19 experience. The patients were tested for several known diseases, but all the tests came back negative. The thesis further discredits the notion that the patients suffered from fungal infection, stating that one «patient did not receive any anti-fungal medicine for treatment, yet still recovered. This suggested that the possibility of the illness being triggered by fungal infection is slim».

Furthermore, the thesis states that the doctors that worked to treat the sick miners «worked with Dr. Zhong Nan Shan and did some sampling». Dr. Zhong Nan Shan is one of China's foremost experts on SARS-coronaviruses, and led his country's response to the 2003 SARS epidemic.

The Wuhan Institute of Virology is also mentioned in the paper, as one «patient tested positive for Serum IgM by the WuHan Institute of Virology», which «suggested the existence of virus infection». The master thesis concludes that the unknown virus leading to severe pneumonia could be either «the SARS-like-CoV from the Chinese rufous horseshoe bat or Bats kind SARS-like CoV».
 

New questions and answers

The ambiguity surrounding the sick miners, the disease they suffered from and the virus samples taken from the mine shaft and shipped to Wuhan in 2013, has therefore triggered a flood of questions for Shi Zhengli and her research team at the Wuhan Institute of Virology.

And in an interview with ScienceMag, Zhengli answers multiple questions relating to the origin of these viruses. Here she confirms that RaTG13 and BtCoV/4991 refer to the same virus. She also explains that the name BtCoV/4991 refers to the sample the virus is taken from, while RaTG13 is the name of the virus itself.

When asked about when Shi and her colleagues sequenced the entire RaTG13 virus, Shi Zhengli answers that this was done in 2018, and that the only virus sample that contained the virus was used up after sequencing. According to this explanation, the laboratory in Wuhan has therefore not stored the virus since 2018:

In 2018, as the NGS sequencing technology and capability in our lab was improved, we did further sequencing of the virus using our remaining samples, and obtained the full-length genome sequence of RaTG13 except the 15 nucleotides at the 5’ end.

As the sample was used many times for the purpose of viral nucleic acid extraction, there was no more sample after we finished genome sequencing, and we did not do virus isolation and other studies on it. Among all the bat samples we collected, the RaTG13 virus was detected in only one single sample.

In 2020, we compared the sequence of SARS-CoV-2 and our unpublished bat coronavirus sequences and found it shared a 96.2% identity with RaTG13. RaTG13 has never been isolated or cultured.

But this explanation differs from what Wuhan’s Institute of Virology wrote in the article they published in Nature on February 2nd. Here they instead write the following about when the virus was sequenced:

We then found that a short region of RNA-dependent RNA polymerase (RdRp) from a bat coronavirus (BatCoV RaTG13) —which was previously detected in Rhinolophus affinis from Yunnan province — showed high sequence identity to 2019-nCoV. We carried out full-length sequencing on this RNA sample.


A Strange method

This makes Alina Chan, a postdoctoral fellow at the Broad Institute of MIT and Harvard, where she works with molecular biology and gene therapy, react:

“Many readers of the Nature article, including myself, interpreted the relevant text to mean that the RaTG13 full-length genome sequencing was only performed after the RdRp match between SARS-CoV-2 and RaTG13. From interviews of Peter Daszak, a close collaborator of Shi Zhengli, I also had the impression that the RaTG13 sample had not been full-genome sequenced until after the COVID-19 outbreak. However, in the Science Q&A, Shi informed us that RaTG13's full genome had been sequenced in 2018, and that this process had depleted the sample entirely”, she explains to Minerva.

Alina Chan further adds that the methods section of the Nature article looks strange, if the Wuhan Institute of Virology had already completed sequencing of RaTG13 in 2018.


In this section of the paper, the scientists at the Wuhan Institute of Virology, Zhou et al. write that in order to sequence the SARS-CoV-2 virus, they «aligned reads to a local database».

Then «by de novo assembly and targeted PCR», the Wuhan Scientist «obtained a 29,891-base-pair CoV genome that shared 79.6% sequence identity to SARS-CoV BJ01 (GenBank accession number AY278488.2).»

"Given that they already had the full genome sequence of RaTG13 back in 2018, wouldn't they have immediately found the 96.2% genome identity match upon querying their internal database of virus sequences for matches to the de novo assembled SARS-CoV-2 genome?" she ponders.

“Surprisingly, they wrote that they found a 79.6% genome match to SARS-CoV BJ01, and a close match to a short region of the RdRp of RaTG13 ––– instead of writing straight away that they found a whopping 96.2% genome match to RaTG13", Chan elaborates.
 

A call for transparency

Another unresolved question raised by this is which database the RaTG13 sequence was uploaded to in 2018, and if other unpublished virus genomes are stored on this local database.

Gunnveig Grødeland is a researcher at the Department of Immunology and Transfusion Medicine at the University of Oslo. Like Chan, she sees a contradiction in Shi Zhengli’s statements about when the virus was sequenced.

This is a clear contradiction that should be investigated”, she says.

On why the timing of the sequencing of RaTG13 virus matters, Grødeland responds:

“For the quality of the sequencing, it does not, but for the discussion about the origin, this is relevant. One of the central principles in research is transparency about the information that is available, including what work has been done and how this was done.”

This may have a natural explanation, but it could also be that it does not. That is why we need more transparency on the raw data”, she elaborates.

Asked about whether we should be concerned about the quality of the raw data provided by the Wuhan Institute of Virology on the RaTG13 sequence, Grødeland says:

“One of the things that should definitely be avoided is conspiracy theories, but asking relevant critical questions is what research is all about. So far, the origin of the SARS-CoV-2 virus is unknown, and something should be investigated. It should at least be in Wuhan’s Istitute of Virology's self-interest to practice full transparency about its raw data, the work that has been done at the institute, and when this was conducted.”
 

Nature to investigate

On August 6th, Minerva presented the contradiction between, one the one hand, Shi Zhengli’s statements to ScienceMag, and on the other, and what was written in the February article in Nature, for the editorial staff of Nature. The editorial staff was asked whether the journal had made any attempt to clarify or rectify the content of the article given that Shi Zhengli has now given a different explanation as to when and why RaTG13 was sequenced.



On the same day, Minerva received a reply from Nature that the inquiry would be taken up with the journal’s editor, and that it was not possible to give further comments at that time. After some time a spokesperson for the journal responded on August 18th:


“We look into any comments or concerns raised about any Nature paper in detail, including those regarding methodological details. In general, our editors will assess comments or concerns that are raised with us in the first instance, consulting the authors and, where appropriate, seeking advice from peer reviewers and other external experts. We are currently considering comments that have been raised with us relating to this paper, and cannot comment further at this time.”

https://www.minervanett.no/alina-chan-coronavirus-covid19/contradicting-statements-cast-doubts-on-chinese-raw-data/364540

___
eof

keskiviikko 9. syyskuuta 2020

PCR Testing – Here Is Why There Are So Many False Positive COVID-19 Cases


PCR Testing – Here Is Why There Are So Many False Positive COVID-19 Cases

The mainstream media is obsessed with reporting new coronavirus cases daily. But how many of them are really genuine cases and how many are false positive COVID-19 cases? The question has been lingering since a while now. To know this we need to understand how coronavirus testing is being done and how the cases are being announced as positive.

 
PCR Testing – Here Is Why There Are So Many False Positive COVID-19 Cases

False Positive

A false positive is an error in data reporting in which a test result incorrectly indicates the presence of a condition such as a disease when the disease is not present, while a false negative is the opposite error where the test result incorrectly fails to indicate the presence of a condition when it is present.

Currently there are two types of diagnostic tests which detect the virus – molecular tests, such as RT-PCR tests, that detect the virus’s genetic material, and antigen tests that detect specific proteins on the surface of the virus.

Different Types of Coronavirus Tests
Different Types of Coronavirus Tests

Your Coronavirus Test is Positive. Maybe it shouldn’t Be

The standard coronavirus tests are throwing up a huge number of positive cases daily. These tests are done based on faulty WHO protocols which are designed to include false positives cases as well.

A rare piece recently published in the New York Times explains in technical detail, the problem with the most common COVID-19 test, the PCR test.

SUBSCRIBE TO GGI VIA EMAIL

Enter your email address to subscribe to GreatGameIndia and receive notifications of new posts by email.

India in Cognitive Dissonance Book by GreatGameIndia

Some of the nation’s leading public health experts are raising a new concern in the endless debate over coronavirus testing in the United States: The standard tests are diagnosing huge numbers of people who may be carrying relatively insignificant amounts of the virus.

This fact was first noted in public by Dr. Beda M. Stadler, a Swiss biologist, emeritus professor, and former director of the Institute of Immunology at the University of Bern.

So if we do a PCR corona test on an immune person, it is not a virus that is detected, but a small shattered part of the viral genome. The test comes back positive for as long as there are tiny shattered parts of the virus left. Correct: Even if the infectious viruses are long dead, a corona test can come back positive, because the PCR method multiplies even a tiny fraction of the viral genetic material enough [to be detected].


New Guidelines against faulty WHO Protocols

After Dr. Stadler made these comments in an interview the CDC updated the guidance regarding retesting. The statement on the site is clear that for at least 90 days after recovery, viral debris can be detected in a patient’s airways. This virus is not capable of causing an infection because it is not capable of replication.

Later, in a more recent update the CDC even discouraged testing asymptomatic people, recommending only to test high-risk individuals and not everyone. The directive goes directly against WHO protocols.

In three sets of testing data that include cycle thresholds, compiled by officials in Massachusetts, New York and Nevada, up to 90 percent of people testing positive carried barely any virus, a review by The Times found.

On Thursday, the United States recorded 45,604 new coronavirus cases, according to a database maintained by The Times. If the rates of contagiousness in Massachusetts and New York were to apply nationwide, then perhaps only 4,500 of those people may actually need to isolate and submit to contact tracing.

The new CDC guidelines were implemented by Trump administration when Dr Fauci was in surgery and recovering.

Earlier, the WHO’s testing protocol was even questioned by Finland’s national health authority. WHO had called on countries to test as many patients as possible for coronavirus.

Finland ran out of testing capacity and began limiting coronavirus tests to the most vulnerable groups and healthcare personnel only. Finland’s national health authority said that testing people with mild symptoms would be a waste of healthcare resources.

In a startling disclosure, Finland’s head of health security, Mika Salminen dismissed WHO advisory saying the WHO doesn’t understand pandemics and that their Coronavirus testing protocol is illogical and doesn’t work.

When WHO faked a Pandemic

So, if the WHO’s testing protocols are indeed based on the most reliable, accurate and well sourced technologies and research methodologies available worldwide, shouldn’t they have known about its negligible effectiveness and its impact in causing panic and chaos? Indeed the WHO knows it doesn’t work and moreover this is not the first time such criticisms have been voiced.

In the past in 2010, the WHO was caught faking a pandemic and was forced to admit that its methodology of measuring the virality or the spread of the disease, instead of its severity was incorrect.

WHO’s top influenza expert Mr Fukuda admitted that the U.N. agency’s six-phase system for declaring a pandemic had sown confusion about H1N1, which was ultimately not as deadly as the widely-feared Avian influenza.
_
https://greatgameindia.com/false-positive-covid-19/

____

For latest updates on the outbreak check out our Coronavirus Coverage.

Send in your tips and submissions by filling out this form or write to us directly at the email provided. Join us on WhatsApp for more intel and updates.

GreatGameIndia is a journal on Geopolitics and International Relations. Get to know the Geopolitical threats India is facing in our exclusive book India in Cognitive Dissonance. Past magazine issues can be accessed from the Archives section.

We need your support to carry on our independent and investigative research based journalism on the Deep State threats facing humanity. Your contribution however small helps us keep afloat. Kindly consider donating to GreatGameIndia.

Donate to GreatGameIndia

2 COMMENTS



___