graviolateam finland

Maahantuomme ravintolisiä USA: sta, FDA: n tiukasti valvomilta markkinoilta. Visionamme on tuottaa oikeaa tietoa terveyden uhkatekijöistä. Suurimpana ongelmana länsimaissa on jatkuva, yksipuolisesti liian hapan ruokavalio, jota elimistö ei kykene riittävästi puskuroimaan, vaan koko aineenvaihdunta -järjestelmä joutuu tekemään työtä happamuutta vastaan. Lopulta elimistö alkaa tulehtua ja saavuttaa potilaan huomaamatta, jatkuvan tulehduksellisen tilan.

tiistai 3. helmikuuta 2015

Historic Perspectives on Graviola from the Chemical Bench to Preclinical Trials

Planta Med 2010; 76(13): 1390-1404
DOI: 10.1055/s-0030-1250006
Reviews
© Georg Thieme Verlag KG Stuttgart · New York

Historic Perspectives on Annonaceous Acetogenins from the Chemical Bench to Preclinical Trials

Chih-Chuang Liaw1 , 2 , Tung-Ying Wu3 , Fang-Rong Chang3 , Yang-Chang Wu3 , 4
  • 1Graduate Institute of Pharmaceutical Chemistry, College of Pharmacy, China Medical University, Taichung, Taiwan
  • 2Department of Life Sciences, National Chung-Hsing University, Taichung, Taiwan
  • 3Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan
  • 4Cancer Center, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
Further Information
  • Abstract
  • Full Text
  • References
  • Figures
 PDF Download Permissions and Reprints


Table of Contents
  • Abstract
  • Abbreviations
  • Introduction
  • Previous Studies on the AGEs before the 2000s
  • The Extensive Studies on AGEs after 2000
  • Biological activities and the mechanisms of action of the AGEs
  • The Studies on Modifications and Analogues of the AGEs
  • Modifications of the γ-lactone ring moiety
  • Modification of the THF ring moiety
  • Replacement of the hydroxy moiety on the aliphatic chain
  • AGEs as cation ionophores
  • From the Chemical Bench to Preclinical Trials
  • Perspectives
  • References
#

Abstract

Studies on the Annonaceous acetogenins began after the first cytotoxic acetogenin, uvaricin, was isolated in 1982. This attractive finding made many medicinal and natural product chemists direct their efforts on the isolation and identification of these classes of compounds.
As more Annonaceous acetogenins were isolated, more information about them was uncovered. From their structural identification to the total synthesis of natural product analogues and from cell-based screening and molecular-based targeting to animal testing, the mechanisms of action of the Annonaceous acetogenins became clearer.
The purpose of this review is to give an account of recent studies on this class of compounds and their analogues, which will aid us not only in clarifying how the Annonaceous acetogenins act but also in establishing principles for the further development of this class of compounds.

#

Key words

Annonaceae - acetogenins - mitochondria complex I inhibitor - pesticidal activity - anticancer activity - apoptosis - acetogenin mimics
#

Abbreviations

AGE: Annonaceous acetogenin
APICID: atmospheric pressure in-source collision-induced dissociation
CC: column chromatography
CCC: countercurrent chromatography
CD: circular dichroism
Complex I: NADH : ubiquinone oxidoreductase
Dansyl-NH: 5-dimethylaminonaphthalen-1-yl-sulfonamide
DIP: direct-inlet probe
EI‐MS: electron-impact mass spectrometry
ESI‐MS: electron-spray ionisation mass spectrometry
FITC: fluorescein isothiocyanate
H125: lung adenocarcinoma cells
H23: non-small cell human lung cancer cells
H8: HPV16 subgenes-immortalised human endocervical cells
HCT-8: intestinal adenocarcinoma cells
HSCCC: high-speech countercurrent
chromatography
HT-29: human colon cancer cells
IC50: the half maximal inhibitory concentration
ITC: isothermal titration calorimetry
K562: human immortalised myelogenous leukaemia line
KB 3–1: human epidermoid carcinoma cells
LC/MS: liquid chromatography/mass spectrometry
LT50: median lethal time
M17/Adr: adriamycin-resistant
murine mammary cells
MCF-7/Adr: adriamycin-resistant human mammary adenocarcinoma cells
MCF-7/wt: nonresistant human mammary adenocarcinoma cell wild type
MDA‐MB‐468: human mammary adenocarcinoma cells
MDR: multiple-drug resistant
NADH: nicotinamide adenine dinucleotide, reduced form
NBD‐NH: 7-nitrobenzo[c][1, 2, 5]oxadiazol-4-yl-amino
NCI: National Cancer Institute
NMA: naphthylmethoxyacetic acid
P388: murine lymphoblastoid cells
P‐gp: P-glycoprotein mediated pumps
PI: propidium iodide
PO: oral administration
PO3: pancreatic adenocarcinoma
PS: PS system (P-388 lymphocytic leukaemia in mice)
SAR: structure-activity relationship
Sf9 cell: pupal ovarian tissue of the Fall armyworm Spodoptera frugiperda
T/C: test/control
T24: bladder cancer cells
THF: tetrahydrofuran
THP: tetrahydropyran
TLC: thin-layer chromatography
TMS: trimethysilyl
YEM: yellow fever mosquito larvae assay
#

Introduction

Plants have a long history of use in the treatment of human diseases. Botanical extracts have long been regarded as a source of new and useful pharmaceuticals. According to Cragg's investigation, approximately 62 % of commercially available drugs have natural product origins [1]. These natural products also play important roles as direct treatments or as templates (lead compounds) that are modified for the treatment of human diseases.

The commonly known example from folkloric medicinal plants is the anticancer agent paclitaxol, a diterpene from Taxus brevifolia (Taxaceae) discovered by Wall and Wani in 1971 [2] that is now used for the treatment of advanced ovarian cancer. 


Other examples of anticancer drugs derived from natural products, such as camptothecin from Camptotheca acuminata (Nyssaceae) [3], podophyllotoxin from Podophyllum peltatum [4], vincristine and vinblastine from Vinca rosea [5], and adriamycin from Streptomyces peucetius [6], have encouraged pharmaceutical chemists to search for new drugs from medicinal plant sources.
Annonaceous acetogenins (AGEs) are a unique class of C35 or C37 secondary metabolites of Annonaceous plants derived from the polyketide pathway. Extensive studies on AGEs have indicated that these naturally occurring compounds possess a broad spectrum of bioactivity, including anticancer, antiparasitic, insecticidal and immunosuppressive effects.

In 27 years, more than 500 AGEs were isolated from various parts of the plants of this family [7], [8], [9], [10]. These bioactive AGEs became more important, particularly in pharmaceutical research [11], [12].
A great interest in investigating the mechanisms of action of a series of AGEs emerged from the leaps in knowledge about the processes involved in tumour cell death. Members of this class of natural compounds are regarded as “potential” candidates for future generations of anticancer drugs. AGEs have become one of the most interesting classes of natural products at present.

Annonaceous plants are important economic crops in Asia. There is an especially abundant biomass of Annonaceous plants in Taiwan. In our studies, AGEs from Formosan Annonaceous plants showed significant cytotoxicity against ovarian cancer cells, 1A9, with more potential than paclitaxol [13].

The purpose of this review is to give a short historical introduction as well as an account of the recent studies on AGEs and their analogues.
This brief outline begins with a description of the sources, isolation, chemistry and biological activities of this class of natural compounds. Achievements in the studies of AGEs are noted by their significant cytotoxicity. Recent studies on the mechanisms of action of the pesticidal and antitumour AGEs are reviewed within the individual sections. In addition, modified analogues of AGEs and AGE mimics were made to verify hypotheses regarding the modes of action of the AGEs. Historically following the studies of the AGEs from the abundant natural biomass, it will be helpful for us to not only clarify how AGEs act but also establish the principles that will guide the further development of these natural products.

#

Previous Studies on the AGEs before the 2000s

The isolation of uvaricin (1) from the roots of Uvaria accuminata Oliv. by Jolad et al. in 1982 and its excellent bioactivity in the PS test system initiated the studies on AGEs as a hot topic in drug discovery [14]. 


Following the experimental and major biochemical conceptual advances, the studies on AGEs during the early 1980s to about 2000 could be summarised in three stages, including the initial stage (before 1990), the middle stage (from 1991–1995), and modern stage (1996–2000). In the initial stage (before 1990), several groups, including McLaughlin's (Purdue, USA), Cave's (CNRS, France), Fujimoto's (Tokyo, Japan), Pettit's (Arizona, USA), and Sneden's (Virginia, USA), began efforts toward the isolation and structural identification of these types of bioactive compounds.
In the isolation procedure, AGEs were first concentrated via solvent partitioning driven by their amphiphathic properties. Methanol is usually the solvent of choice for the extraction of these AGEs from plant materials. By partitioning the crude extract with chloroform and water, the chloroform layer will become enriched with the AGEs. Chromatographic techniques, such as gradient elution column chromatography (CC), flash chromatography and preparative TLC, were generally utilised for the isolation and purification of these compounds. 

During this period of time the major population of AGEs was discovered. For example, the first mono-tetrahydrofuran (THF) AGE, annonacin (2), was isolated from Annona densicoma Mart [15]; the adjacent bis-THF AGE, squamocin (3), was isolated from A. squamosa L. [16]. The first nonadjacent bis-THF AGE, bullatalicin (4) [17], was isolated from A. bullata A. Rich. and was also isolated from A. cherimolia Mill as cherimoline (5) [18] (renamed by Cortes et al. as cherimolins-1 and 2 [19]). The first AGE with the saturated γ-lactone moiety, laherradurine (6), was isolated from A. cherimolia seeds, of which the structure was revised by the same group later [19], [20].

The primary structures of the AGEs were determined by 1H- and 13C‐NMR and mass spectroscopy, in which the former method (NMR) could confirm the presence of functional group substituents (the γ-lactone ring moiety and the oxygen-bearing moieties) and the latter (MS) could determine the placement of substituents along the carbon skeleton. Rupprecht et al. published the first review on AGEs in 1990 [7], reporting the strategies for their structural elucidation and revising some structures of the published compounds. 


At that time, three main types of AGEs, mono-THF, adjacent bis-THF and nonadjacent bis-THF, were classified based on the presence of the THF ring moieties.
The stereochemistry of the substituents of AGEs was mainly determined by organic syntheses of the partial structures and X‐ray crystallography of the AGEs. Hoye et al. (Minnesota, USA) first proposed a valuable method for the quantitative correlation of the 1H‐NMR chemical shift data for a series of model diastereomeric bis-tetrahydrofurans [21], [22]. Pettit et al. first elucidated the relative stereochemistry of the eight chiral centres of rolliniastatin 1 (7), by X‐ray structure determination of its 15-O-p-bromophenylurethanic derivative, as 4S*,15S*,16S*,19R*,20R*,23S*,24R*,36R* [23]. 

However, the absolute configuration of rolliniastatin 1 (7) should be the mirror image of the proposed structure because of its CD data [n-π* Δε (235) < 0 and π-π* Δε (220 nm) > 0] [24], [25], which indicates a 36S configuration.
In 1990, Born et al. proposed a systematic comparison of the 1H- and 13C‐NMR chemical shifts of the diagnostic protons for two diastereomers, which became a popular way to confirm the erythro and threo effects on the protons of the tetrahydrofuran rings [26]. Meanwhile, Hoye et al. proposed a symmetry-assisted synthesis of the bis-THF moiety [27]. Biosynthetically, the AGEs are regarded to originate from polyhydroxy C-32 or C-34 fatty acids, to which a 2-propanol unit is added to form the methylated α,β-unsaturated γ-lactone. Hoye's proposed idea really matched the biosynthetic hypothesis for the construction of these compounds ([Fig. 1]).

Zoom ImageZoom Image Fig. 1 Structures 1 – 7.
Following the rapid development of chromatographic techniques in the early 1990s, studies on the AGEs in the middle stage (from 1991 to 1995) focused on the isolation and purification of various types of AGEs and the identification of the stereochemistry of AGEs by chemical methods. More laboratories worldwide became active in research related to the isolation, structural elucidation, and even total synthesis and mechanisms of anticancer action of these compounds. Our group also began studying the Formosan AGEs at this time.

Since the 1970s, our group has mainly studied the secondary metabolites from plants of the Lauraceae.
Because of the close phylogenic relationships of both the Lauraceae and Annonaceae families, we started to study the secondary metabolites of the Formosan Annonaceous plants ([Table 1]). 


In Taiwan, there are 21 species (8 genera) of Annonaceous plants, of which three, Fissistigama glaucescens (Hance) Merr., F. oldhami (Hemsl.) Merr. and Goniothalamus amuyon (Blanco) Merr., are native to the Taiwan island [28], [29]. 

 Our early studies on the Formosan Annonaceous plants focused on alkaloids, which showed diverse biological functions, including cytotoxicity [30], antiplatelet aggregation activity [31], cardiovascular activity [32], [33] and antimicrobial activity [34].
Afterwards, diterpenoids, styrylpyrones [12], [35], [36] and some linear AGEs [37], mono-THF AGEs [38], [39], and adjacent bis-THF AGEs [39] were isolated from various parts of the Annona plants in our laboratory. Two groups in China also started related research on AGEs in China during that period [40], [41], one of which – Dr. Yang's group in Yun-Nan – cooperated with us to elucidate the structures of the AGEs from A. muricata [42].



Table 1 Formosan Annonaceous plants collected for investigation of their secondary metabolites
To improve the efficiency of the chromatography, repeated open column chromatography and high-performance liquid chromatography (HPLC) were introduced for the isolation of AGEs [43], [44], [45], [46] such that AGEs with minor structural differences could be isolated more easily and quickly. 

Based on the isolations of different AGEs, their general structural features can be divided into two classes:
1) the moiety of the γ-lactone rings: the α,β-unsaturated γ-lactone ring (normal form) or the ketolactone (isoform) (see [Fig. 2]); and
2) the oxygen-bearing moieties (see [Fig. 3]) [9], [47]. In addition, the structure of (−)-muricatacin (8), the first shortened AGE with only a terminal γ-lactone moiety and an aliphatic chain, was reported in 1991 [48].

Zoom ImageZoom Image 

Fig. 2 γ-Lactone subunits in AGEs.
Zoom ImageZoom Image 

Fig. 3 

Tetrahydrofuran (THF), tetrahydropyran (THP), and other oxygen-bearing subunits in Annonaceous AGEs.


Due to the difficulty in crystallising aliphatic AGEs, the determination of the absolute stereochemistry of AGEs became the main challenge of the research work. 

Hoye et al. first used spectroscopic methodologies to determine the absolute configurations of stereogenic carbinol centres in the five adjacent bis-THF AGEs and four mono-THF AGEs with the refined Mosher method in 1992 [43], [44]. They also validated the configuration at the C-4 carbinol centre in these bioactive AGEs as the R configuration [49]. 

Fujimoto et al. designed a series of mono-THF compounds with various conformations and reported their 13C‐NMR resonances, which are useful in determining the conformations of the THF ring moieties [50]. Yu et al. made a single crystal of (+)-gigantecin (9) from A. coriacea Mart for an X‐ray study to determine its absolute conformation [51]. These research findings accelerated the process for the structural identification of the AGEs.

On the other hand, Duret et al. suspected that AGEs with terminal ketolactones (isoforms) were artefacts of the translactonisation of 4-hydroxy-AGEs. They further confirmed this hypothesis by performing the extraction and characterisation of the initial AGEs from fresh crude materials under the effects of alkaloids, basic media, and alcohols. These reagents affected the kinetics of the translactonisation [52], a result that was later supported by Duret et al work showing that 4-hydroxylated AGEs led to iso-AGEs under basic conditions [53].

The studies on AGEs in the modern stage (from 1996 to 2000) were concerned with the efficient identification of AGEs by hyphenated techniques and other spectroscopic methods. Although normal and reverse-phase HPLC are powerful tools for the isolation of natural products, they still have some limitations, such as the amount of sample that can be purified per unit time, the cost of the solvent, the size of the columns. Searching for new technologies to facilitate the chromatographic work is very important.
Hopp et al. used countercurrent chromatography (CCC) to isolate four AGEs, (2,4-cis- and trans)-9-hydroxyasimicinone (10), (2,4-cis- and trans)-squamoxinone B (11), (2,4-cis- and trans)-squamoxinone C (12), and isoannoreticuin (13), from the bark of A. squamosa [54]. Duret et al. also applied high-speed countercurrent chromatography (HSCCC) to the separation of AGEs from A. atemoya to give two major AGEs, squamocin (3) and bullatacin (rolliniastatin-2, 14), and six other known AGEs [55]. Moreover, to separate mixtures of AGEs that cannot be easily purified by regular HPLC methods, some Japanese scholars and our laboratory introduced the recycle-HPLC system for isolating AGEs.


To develop a convenient spectral methodology to determine the stereochemistry of AGEs, Gawronski an Wu provided a far more reliable way of determining the absolute configuration of the γ-lactone ring moiety through the analysis of the CD spectra of butenolides [25]. Duret et al. modified the Mosher method and determined the stereochemistry of asimicin (15) by the long-range anisotropic effect of 2-NMA (naphthylmethoxyacetic acid), [56] ([Fig. 4]).
Zoom ImageZoom Image 

Fig. 4 Structures 8 – 15.
The other key tool for determining the structures of AGEs is mass spectrometry (MS). Generally, electron-impact mass spectrometry (EI‐MS) is the preferred technique for determining the placement of the tetrahydrofuran rings and functional groups (hydroxy, ketone, acetoxy and double bond) along the hydrocarbon chain. The derivatised AGEs, such as TMS and acetyl derivatives, are helpful in the elucidation of these structures. In addition, the direct-inlet probe technique (DIP) and lower evaporator energy (e.g., 30 eV) have been suggested for use with EI‐MS scanning because AGEs easily decompose thermally. The structure of squamocin (3) from A. squamosa was characterised by a combination of chemical derivatisation and precursor-ion scanning mass spectrometry.
The lactone portion of squamocin (3) was modified with N,N-dimethylethylenediamine in the vapour phase to afford a strong positive charge at one end of the skeleton [57]. 


In 1997, Gu et al. (XenoBiotic Laboratories), cooperating with the McLaughlin group, analysed AGEs from R. mucosa that were amenable to liquid chromatography/mass spectrometry (LC/MS) with ionisation source-atmospheric pressure in-source collision-induced dissociation (APICID) to detect the presence of 40 known AGEs, in addition to four new AGEs of diverse structures, in a bioactive crude methanol-soluble fraction from this plant extract [58]. They also observed a unique fragmentation rule for AGEs with a hydroxy group at C-4, which had a characteristic loss of a terminal γ-lactone (112 amu) during ESI‐MS scanning [58]. 


 This rapid and relatively uncomplicated selective ionisation procedure also provided a convenient and useful method for identifying AGEs with or without a hydroxy group at C-4.
#

The Extensive Studies on AGEs after 2000


After 2000, we continued investigating the AGEs from Formosan plants of Annona species [59], [60], [61], [62]. Among them, two epimeric AGEs, muricins A (16) and B (17) [59], were isolated and their absolute configurations were determined by the modified Mosher method. Muricin B (17) is the first Annonaceous acetogenin to possess a hydroxy group with the S-configuration at C-4, where the typical configuration of the hydroxy group was R. In 2003, we reported a novel skeleton of abridged AGE, rollicosin (18), from the unripe fruits of Rollinia mucosa Baill, which was the first identified compound that contained lactone moieties on both sides of an aliphatic chain [62]. Soon after this isolation, Chinese scholars reported the second abridged AGE, squamostolide (19), from A. squamosa [63] ([Fig. 5]).
Zoom ImageZoom Image 

Fig. 5 Structures 16 – 19.
During this time, the function and mechanism of action of AGEs were investigated.
The link between the mitochondrial respiratory chain and cell apoptosis was clarified [64].
The latter, namely programmed cell death, is a normal physiological process that selectively and desirably destroys cells and tissues without an inflammatory response, as opposed to a necrotic cell death.

Instead of focusing on the inhibition of mitochondria complex I, we found that bullatacin (14) could induce cell death via apoptosis based on an analysis of the morphological changes of bullatacin (14)-treated Hep 2.2.15, as determined by double staining with fluorescein isothiocyanate (FITC)-labelled annexin V and propidium iodide (PI) [65]. This finding also opened a new window for exploring the mechanism of action of AGEs. Herein, we summarise the studies on the cytotoxicity and pesticidal activity of AGEs in the last decade.

#

Biological activities and the mechanisms of action of the AGEs

Although AGEs were reported with high potential and diverse biological activities, including antibacterial [66], insecticidal, cytotoxic and immunosuppressive effects, pharmaceutical scientists were interested in how AGEs worked in cells (what the mechanism of the anticancer action of AGEs is) and whether the compounds could work in vivo. 

Combined with the traditional uses of the Annonaceous plants in North America and South-East Asia, scientists noticed the pesticidal activities of AGEs and proposed a possible mechanism of pesticidal action involved to ATP levels in pests. 

Thereafter, they found that both the cytotoxic and pesticidal activities should be related to ATP generation and NADH oxidation in mitochondria, which directed many ongoing studies about the interaction of AGEs with the mitochondrial complex I.
Anticancer activity: Jolad et al. first reported the significant in vivo cytotoxic activity of uvaricin (1) by the PS screening system [14]. Ahammadsahib et al. used normal mice bearing L1210 murine leukaemia and athymic mice bearing A2780 conventional ovarian cancer xenografts to study the cytotoxic action of bullatacin (14) and analogues in 1993; meanwhile these compounds also have potential as insecticides in insect-derived Sf9 cells. The toxicity of AGEs in both cases probably arises from the strong inhibitory ability of mitochondrial electron transport with specific action at complex I [67]. 
Degli Esposti et al. (France) first used mammalian mitochondria to study the action of AGEs toward the NADH-ubiquinone reductase (complex I) and reported that bullatacin (14) inhibited the proton pumping function of complex I with similar efficiency under steady-state and non-steady-state conditions, as compared to the action of rotenone and piericidin [68].

Because of the ability to inhibit the mitochondrial complex I, the main gate of the energy production in the cells, AGEs have been regarded as candidates for future generations of antitumour drugs with different mechanisms.

Besides blocking the NADH : ubiquinone oxidoreductase (complex I) in the electron transport system, AGEs are also powerful inhibitors of the NADH oxidases peculiar to the plasma membranes of cancer cells.

Both mechanisms of action result in the inhibition of ATP production and may account for the observation that AGEs are more effective at killing multiple-drug resistant (MDR) tumours than their nonresistant counterparts since the MDR pumps on the cell membranes require ATP to function.
In addition, Oberlies et al. observed that AGEs could selectively inhibit the cell growth of cancerous cells by in vitro cell inhibition assays against three murine (P388, PO3, and M17/Adr) and two human (H8 and H125) cancer cell lines [69].

Interestingly, the work of Oberlies et al. proposed that this class of natural products showed a certain biological activity against some drug-resistant cancers. 


Currently, multidrug-resistant cancers are hard to cure because the cancer cells have developed a mechanism to overcome the anticancer agents. 

 Based on the biochemical differences between MDR and parental cancer cells, such as the ATP-dependent P-glycoprotein-mediated pumps (P‐gp) and the higher demand for ATP in the MDR cancer cells, Oberlies et al. used bullatacin (14) to test two cell lines, MDR human mammary adenocarcinoma (MCF-7/Adr) cells and the parental, nonresistant wild-type (MCF-7/wt) cells [70]. Therefore, ATP depletion could be another mode of action of AGEs that offers a special advantage in the chemotherapeutic treatment of MDR tumours.
Shimada et al. also proposed a model for explaining the action of AGEs [71]. They suspected that the lactone ring alone could directly interact with the binding to complex I, and the THF rings with flanking OH groups function just as hydrophilic anchors at the membrane surface that allow lateral diffusion (or random distribution) of the lactone ring in the membrane interior. To verify the model, Kuwabara et al. synthesised a series of analogues with two terminal γ-lactone rings [72]. However, the bioassay results did not show that these analogues worked twice as well as AGEs did.
To clarify the mechanism of action of AGEs, we cooperated with biochemists and pharmacologists in Taiwan due to its abundant amount of naturally occurring Formosan AGEs. Yuan et al. found that annonacin (2) could arrest T24 bladder cancer cells at the G1 phase and cause cytotoxicity in a Bax- and caspase-3-related pathway [73]. 
In addition, squamocin (3) was also observed to arrest the same cancer cells at the G1 phase and cause a selective cytotoxicity in S-phase-enriched T24 cells via the same pathway of cleaving the functional protein of PARP and inducing cell apoptosis [74]. 
Squamocin (3) was also found to inhibit the proliferation of K562 cells via G2/M arrest in association with the induction of p21, p27 and the reduction of Cdk1 and Cdc25C kinase activities [75]. These works connected the AGEs with cell apoptosis, which exploited the multiple functions of AGEs as new anticancer candidates.

Pesticidal activity:
Following the North American folk use of Annonaceous plants as pesticides, Rupprecht et al. first noted this application. They determined the pesticidal potencies of the extracts from the paw paw tree (Asimina triloba) by the brine shrimp test (Artemia salina larvae), which paralleled the significant activities seen against the striped cucumber beetle (Acalymma vittatum F.), Mexican bean beetle (Epilachna varivestis Mulsant), mosquito larvae (Aedes aegypti L.), blowfly larvae (Calliphora vicina Meigen), melon aphid (Aphis gossyphii Glover), two-spotted-spider mite (Tetranychus urticae Koch) and free-living nematode (Caenorhabditis elegans). During the preliminary screening, asimicin (15) was isolated and its pesticidal action evaluated [76]. Moreover, by the same bioactivity-guided isolation/fractionation method, bullatacin (14) was isolated and its pesticidal effects observed at concentrations as low as 1 ppm, whereas bullatacinone (20) lacked pesticidal activities [24]. Meanwhile, Ratnayake et al. conducted a controlled study on the pesticidal potencies of extracts from various plant parts of the paw paw tree (Asimina triloba) using the brine shrimp test [77] ([Fig. 6]).
Zoom ImageZoom Image 

Fig. 6 Structures 20 – 21.
He et al. further evaluated the pesticidal properties of 44 AGEs using the yellow fever mosquito larvae (YFM) assay [78]. The results clearly demonstrated that most AGEs had pesticidal properties. In addition, they indicated that the adjacent bis-THF AGEs with three hydroxy groups, for example, bullatacin (14) and trilobin (21), were the most potent. 

 They further made AGEs, mono-THF, adjacent bis-THF, and nonadjacent bis-THF types as insecticidal baits to test the potent toxicity of these compounds against insecticide-susceptible and ‐resistant German cockroaches, compared to the activities of some conventional synthetic insecticides [79]. 

Ohsawa et al. evaluated the insecticidal activities of AGEs from the seeds of the pond apple, A. glabra L. with a micro-sprayer on the cabbage leaf or the filter paper [80]. Meanwhile, Guadano et al. also found that annonacin (2) showed antifeedant effects on L. decemlineata and squamocin (3) was toxic to L. decemlineata and M. persicae. They also proved that both AGEs were not mutagenic but were toxic in the absence of a metabolic activation system [81].


Londershausen et al. also noticed that extracts of ground seeds from A. squamosa revealed interesting insecticidal properties. AGEs were determined to be the active components through an activity-monitored fractionation. The investigation of ATP-levels (at the LT50 value) in Plutella xylostella under treatment with squamocin (3) and antimycin A revealed values of 1.45 and 1.35 µmol/g fresh weight, respectively. Further studies revealed that squamocin (3) showed an inhibitory effect on NADH-cytochrome c-reductase and complex I of insect mitochondria with IC50 values of 4–8 µmol/g protein and 0.8 µM, respectively. Similar results for squamocin (3) were observed for the inhibition of complex I from bovine heart muscle (IC50: < 0.1 µM) or Neurospora crassa cells (IC50: 0.3 µM), but no effects on other coupling sites of mitochondrial complexes were observed [43]. These assembled experimental results were the work of Lewis et al. in 1993 [82]. Friedrich et al. and Hollingworth et al. simultaneously reported the insecticidal action of AGEs to be a result of the inhibition of mitochondria complex I [83], [84]. Friedrich et al. found that the inhibition of mitochondrial and bacterial NADH : ubiquinone oxidoreductase (complex I) by AGEs was not purely competitive [83]. They demonstra

#

The Studies on Modifications and Analogues of the AGEs


The structure-activity relationship (SAR) studies of AGEs are always interesting for medicinal and natural product chemists. Miyoshi et al. noticed that the alkyl spacer between the γ-lactone and hydroxylated THF ring moieties elicited potent inhibitory activities on the NADH oxidase [85]. 

They summarised the SAR rules of AGEs as follows:


1) the adjacent bis-THF ring moiety is not an essential structural factor for inhibition, and the mono-THF ring compounds can maintain potent activities;

2) this stereochemical factor was also not essential for potent activity irrespective of the number (one or two) of THF rings;

3) the THF rings of the AGEs had strong interactions with the interface of lipid bilayers irrespective of the stereochemistry in the THF region; and 4) the spacer moiety is very important for potent activity [86]. 


Takada et al. also tested the NADH oxidase activity of two naturally occurring AGEs, bullatacin (14) and diepomuricanin (22), and several synthesised analogues in a comparison with that of piericidin A [87]. 

They concluded that both ring moieties, the γ-lactone ring and the tetrahydrofuran ring, acted in a cooperative manner on the enzyme and that the optimal length of the alkyl spacer was 13 carbon atoms. 
These results supported the above hypothesis that Miyoshi et al. offered.
To consider solely the role of the THF ring moieties, Murai et al. synthesised Δlac-AGE (23) (AGE without the α,β-unsaturated γ-lactone ring), which was also shown to be a novel type of inhibitor that acts at the terminal electron transfer step of mitochondrial NADH-ubiquinone oxidoreductase (complex I). 

They also synthesised a photolabile Δlac-AGE (24) connected to a biotin probe to trace the labelled peptide without the use of a radioisotope. This photolabile Δlac-AGE (24) elicited potent inhibition of bovine heart mitochondrial complex I at nanomolar levels [88]. Ichimaru et al. further synthesised a series of Δlac-AGEs, in which the stereochemistry around the hydroxylated tetrahydrofuran (THF) ring moiety was systematically modified, and examined their inhibitory effects on complex I. The results revealed that the bis-THF ring analogues are much more potent than the mono-THF ring analogues and that the stereochemistry around the bis-THF ring moiety played a significant role in the inhibitory effects on complex I [89]. Compound 25 showed a similar IC50 value as was observed for bullatacin (14) in the reduction of NADH oxidase activity (0.60–0.65 mmol NADH/min/mg of protein) in submitochondrial particles. Intriguingly, Ichimaru et al. demonstrated that the inhibitory site of complex I on which Δlac-AGEs acted might be different from that at which natural AGEs did.

On the other hand, these featured structures, such as the γ-lactone ring moiety, one to three THF/THP rings with multiple chiral centres, and an alkyl side chain make AGEs difficult and challenging synthetic targets.

Because substantial amounts of pure samples are required for further biological and clinical studies, a number of total syntheses of AGEs have been reported in the literature since the 1990s. Recent advances in the total syntheses of AGEs include mono-THF AGEs: murisolin (26) [90], [91], longicin (27) [92], [93], and cis-solamin (28) [94], [95], adjacent bis-THF AGEs: bullatacin (14) [96], rolliniastatin 1 (7) [23], [97], rollimembrin (29) [97], [98], 10-hydroxyasimicin (30) [99], [100], membranacin (31) [97], [101], asimicin (15) [76], [102], longimicin D (32) [103], [104], and mucoxin (33) [105], [106], non-adjacent bis-THF AGEs: cis-sylvaticin (34) [107], [108] and gigantecin (9) [109], [110], and others, jimenezin (35) [111], [112], mucocin (36) [113], [114], pyranicin (37) [115], [116], pyragonicin (38) [115], [117], [118], rollicosin (18) [62], [119] and squamostolide (19) [63], [120] ([Fig. 7]).

Zoom ImageZoom Image


Fig. 7 Structures 22 – 38.
In addition to the total syntheses of various AGEs, some special analogues were designed to improve the bioactivities through, for example, modifications of the γ-lactone ring, the THF ring, and hydroxy moieties on the aliphatic chain.
#

Modifications of the γ-lactone ring moiety

Hoppen et al. designed and prepared quinone-mucocin (39) and quinone-squamocin D (40) to elucidate the mechanisms of action of the AGEs. The IC50 values of 39 and 40 in the inhibition of the mitochondrial NADH-ubiquinone oxidoreductase complex were 3.6 and 1.7 nM, respectively [121]. These results supported their hypothesis that AGEs are competitive inhibitors at the ubiquinone binding site of complex I based on the structural similarity between the butenolide and the quinine. Arndt et al. synthesised a systematic variation of featured structures, the butenolide and the ether components, to evaluate the critical factors for the interaction of the AGEs with complex I. 
Their results and data from the smaller substructures indicated that the substructures of the AGEs, the polyether component and the lipophilic side chain, would be necessary for strong binding of the AGEs to complex I [122].
In addition, aromatic heterocycles are commonly found as base structures of potent complex I inhibitors. Duval et al. tried to replace the α,β unsaturated γ-lactone moiety of squamocin (3) with benzimidazole via an unusual condensation-oxidative decarboxylation reaction with 1,2-diamines in the presence of acetic acid and oxygen. 
Although they did not clarify the inhibitory ability of the modified squamocin toward complex I, one of the benzimidazole analogues (41) showed cytotoxicity (KB 3–1) with an IC50 value of 2.2 × 10−3  µM and induced a 61 % accumulation of the G1 phase of the KB 3–1 cell cycle at concentrations of 1–5 nM, with apoptosis above 10 nM [123]. In 2006, Duval et al. semisynthesised a series of heterocyclic analogues of squamocin (3). 

Their results suggested that the binding of this hybrid inhibitor (41) was responsible for a negative allosteric effect at the level of the first ubiquinone-binding site of mitochondrial complex I [124].

Duval et al. also prepared a small library of the γ-keto ester derivatives of squamocin (3) and screened their biological activities, including their cytotoxicity against KB 3–1 cells, inhibition of mitochondrial complex I and of complex III. However, these modified analogues with an open γ-lactone ring did not show better activity than that of the parent compound, squamocin (3) [125].
Except for the adjacent bis-THF and nonadjacent bis-THF AGEs, Kojima et al. made a series of α,β-unsaturated-γ-lactone-free, nitrogen-containing heterocyclic analogues of solamin (42), a mono-THF acetogenin. The cytotoxicities of the compounds were investigated against 39 tumour cell lines. One of them, a 1-methylpyrazol-5-yl derivative (43), showed a selective increase in cytotoxicity against NCI‐H23 with a potency 80 times higher than that of solamin [126] 

([Fig. 8]).
Zoom ImageZoom Image


Fig. 8 Structures 39 – 43.
#


Modification of the THF ring moiety


The AGEs are a large class of naturally occurring polyketides that exhibit potent anticancer activities. In 2000, based on both the difficulty associated with total syntheses of AGEs and the straightforward means by which their structures can be simplified, Chinese and French scholars both proposed to replace the ethylene bridge in the THF rings with normal and iso-terminal lactone moieties, respectively [127], [128].

Yao and coworkers further studied simplified AA005 (44) and its analogues, which showed potent antitumour activities and significant selectivity between normal cells and cancer cells (≥ 7, [129]). 
Zeng et al. designed and synthesised (4R)-hydroxylated analogue 45 based on the structure of bullatacin (14). The preliminary screenings showed that the IC50 values of 45 were 1.6 × 10−3 and 8 × 10−2 µg/mL against HT-29 and HCT-8 cells, respectively. A remarkable enhancement of cytotoxic effect for the 4(R)-hydroxy analogue (45) was observed [130]. The results support a very interesting piece of information, namely that both the butenolide and ethylene glycol subunits play essential roles in the cytotoxicities of the compounds against tumour cell lines. Their precise role is not yet clear. Additionally, the presence of the hydroxy group at C-10 and the absolute configuration of the methyl group on the butenolide moiety (46) are less important for their activity [131].
Rodier et al. tried to introduce a benzoyl group to fix the moiety between the ether linkage; these analogues display interesting cell cycle effects but are less potent than bullatacinone (20), a compound with the same terminal lactone [132]. Fujita et al. also tried to replace the bis-adjacent THF ring by a 1,2-cyclopentanediol bis-ether skeleton to obtain simplified mimics 47–50. 

Based on the evaluation of the inhibitory effects on mitochondrial NADH : ubiquinone oxidoreductase (complex I), the 1,2-cyclopentanediol bis-ether motif also showed very potent inhibitory activity at the nanomolar level [133].

For the study of AGE mimics, Liu et al. further designed, synthesised and evaluated a new series of mimics containing a terminal lactam [134]. They found that the N-methylated lactam-containing compounds 51, 52, and 53 exhibited comparable potencies to that of AA005 (44) and similar selectivity among cancer cells. N-Methyl compound 51 shows comparable activities to that of AA005 (44) and retains similar cell selectivity.

It was also revealed that the stereogenic centre on the lactam is not essential for antitumour activity.


Recently, Liu et al. synthesised a series of analogues by replacing the acyclic bis-ether functionality of AA005 (44) with certain conformationally constrained fragments.

Interestingly, most newly synthesised mimetics were found to exhibit potent activities against breast cancer cells and showed satisfactory selectivities between cancerous and non-cancerous cells. 

Among them, an N,N’-dimethyl bis-amide compound (54) exhibits more potency against MDA‐MB‐468 cells than does its parent molecule AA005 (44). Studies by Lin et al. indicate that bisamide analogues of AA005 make this unique class of anticancer agents much simpler and allow more flexibility for their future development [135] ([Fig. 9]).
Zoom ImageZoom Image


Fig. 9 Structures 44 – 54.
#


Replacement of the hydroxy moiety on the aliphatic chain


Some scholars have studied the replacement of the hydroxy moieties on the aliphatic chain of AGEs. Ye et al. obtained halogen-substituted AGEs, 4(S)-chloro-4-deoxygigantetrocin A and 4(S)-18-dichloro-4,18-dideoxy-asimilobin, by treating gigantetrocin 


A with triphenylphosphine and CCl4. The chlorinated compounds showed decreased bioactivities in the brine shrimp lethality test and against human tumour cell lines [136]. Kojima et al. made C4-fluorinated analogue (55) of solamin and evaluated its antitumour activities against 39 tumour cell lines. They found that C4-fluorinated solamin (55) showed more potent growth inhibitory activity against cancer cell lines than did solamin [137].

On the other hand, Gallardo et al. made 10-oximeguanacone (56), the first bioactive nitrogenated acetogenin, which showed potent inhibition towards complex I by the titration of the NADH oxidase and NADH : ubiquinone oxidoreductase activities [138]. Duret et al. semisynthesised amino derivatives from two natural AGEs, rolliniastatin-1 and squamocin. Although it is noteworthy that these amino-AGEs still retain some activity, more studies are required to confirm the potencies of these derivatives as new specific and efficient anticancer agents [139].

A variety of chemical strategies has been applied to investigating biological processes. Recently, fluorescent modifications became powerful tools for visualising the distribution of bioactive natural products in cells and investigating their targeting. In 2005, Derbre et al. synthesised hybrids consisting of an AGE tail connected to a fluorescent tag. Using fluorescent microscopy, both 57 and 58 were initially observed in Jurkat cell mitochondria, but they diffused into the cytosol of apoptotic cells, supporting the conclusion that squamocin (3) passes through the plasma membrane and targets the mitochondria. Indeed, both semisynthesised fluorescent derivatives were shown to be potent apoptosis inducers that were directed to this organelle. Besides, they proposed that the lactone moiety seems not to interfere with the mitochondrial targeting but apparently influenced the bioactivity of AGEs [140]. 

Alexander et al. attached ethyl 7-dimethylaminocoumarin 4-acetate to the diols of (−)-mucocin (59) through amide coupling chemistry. Although coumarin-labelled mucocin can also induce fluorescently coded morphogenic responses, no expected response was found [141]. This result might be due to the occupation of the mitochondrial recognition site by the fluorescent coumarin group. To overcome the above disadvantage, Maezaki et al. and Kojima et al. labelled the terminal aliphatic chain of solamin (60, 61) with fluorescent groups, 7-nitrobenzo[c][1,  2, 5]oxadiazol-4-yl-amino (NBD‐NH-) and 5-dimethylaminonaphthalen-1-yl-sulfonamide (dansyl-NH-), in 2007 and 2009, respectively [142], [143]. It was anticipated that these compounds would be used to explore the targeting of AGEs.

Among AGE mimics, Liu et al. tried to modify the C-10 hydroxy group of the AGE mimic to introduce a label based on the results of the anticancer-activity screenings of parallel synthetic analogues. Fluorescent-imaging studies revealed that AA005-flu's (62 and 63) distribution in normal human cells was significantly different from that in cancer cells. AA005-flu accumulated in the mitochondria of the cancer cells. This direct and visible evidence suggests that membrane recognition of AA005 (44) is involved in its selective bioactivity [144] ([Fig. 10]).
Zoom ImageZoom Image

Fig. 10 Structures 55 – 63.
#


AGEs as cation ionophores

Although many research results mentioned the mechanisms of AGEs, for instance, the inhibitory action of mitochondria complex I (NADH : ubiquinone oxidoreductase) [145], induction of programmed cell death by the expression of the pro-apoptotic proteins Bax, Bad, caspase-3 [74] and the structure-activity relationships of either natural, semisynthesised or synthesised compounds, the diverse bioactivities of the various types of AGEs still seem difficult to explain. 

 Some researchers notice the chemo-physical features of various AGEs and more direct evidence was provided as a new structure-activity relationship for AGEs.
Sasaki et al. first reported the ionophore activity of the AGEs. It was revealed by NMR studies that the structurally-related analogues of AGEs form supramolecular complexes with metal cations [146]. These studies indicated that hydroxylated bis-THF derivatives, structural components of the potent antitumour AGEs, formed supramolecular complexes with metal cations. In particular, some formed 2 : 1 ligand : metal complexes with calcium cations with high selectivity [146]. Although Araya et al. evaluated the ion-transport and ion-binding activities of AGEs using apparatus W-08 in 1995 and did not find any special activity [147], in1998 Sasaki et al. indicated that two AGEs, bullatacin (14) and asimicin (15), and their structurally related analogues binding bivalent cations such as Ca2+ and Mg2+ [148], [149]. Peyrat et al. evaluated the 13C‐NMR longitudinal relaxation times (T1) of both annonacin (2) and squamocin (3) in the absence and presence of Ca2+ ions to assess the structural changes that accompany complexations. They thought that the interesting cytotoxic activities of the THF-γ-lactone derivatives could be explained by their ionophoric ability. Their results also show differences in the stoichiometry of the complexes for mono-THF AGE and bis-THF AGE with Ca2+ ions [150].
In biological studies with living cells, we assumed that AGEs play a role in the bioavailability of the cations in the cell membranes due to their amphiphilic nature. 

While culturing smooth muscle cells of the human coronary artery with squamocin (3) in our study, we observed that squamocin (3) (an adjacent bis-THF acetogenin) could induce a transient but strong increase in the large-conductance Ca2+-activated K+ channels [151].

In a whole-cell configuration, squamocin (3, 0.3–100 µM) induced a Ca2+-activated K+ current [IK(Ca)] in a concentration-dependent manner with an EC50 value of 4 µM. When cells were exposed to a Ca2+-free solution, squamocin (3, 3 µM) induced a transient increase in IK(Ca). In the continued presence of squamocin (3), an additional increase in extracellular Ca2+ (1 mM) caused a significant increase in IK(Ca). In the cell-attached configuration of the single-channel recordings, squamocin (3) applied to the bath increased the activity of large-conductance Ca2+-activated K+ (BKCa) channels without altering the single-channel conductance. These findings provide evidence that squamocin (3) can activate IK(Ca) in coronary arterial smooth muscle cells. 

The initial transient activation of IK(Ca) may reflect squamocin-induced Ca2+ release from intracellular Ca2+ stores, whereas the sustained activation of IK(Ca) may arise from the squamocin-induced Ca2+ influx across the cell membrane. The stimulatory effects of squamocin (3) on these channels should affect the functional activity of vascular smooth muscle cells [151].

We speculate that AGEs could use their hydrophilic centres (THF rings with flanking hydroxy groups) to bind cations like Ca2+ and surround the ion core by its peripheral hydrophobic regions (long chains). 


This arrangement allows the molecules to dissolve effectively in the membrane and diffuse transversely into cells as ionophores. We clarified the interaction between mono-THF AGEs and Ca2+ by isothermal titration calorimetry (ITC), which is an extremely powerful and highly sensitive technique for measuring the heats of interaction of reacting species in dilute solution. Interestingly, we found that the mono-THF AGEs annonacin (2) and uvariamicin-I (64) interacted with Ca2+ by an exothermic process, indicating the formation of AGE-calcium complexes [152] ([Fig. 11]).

Zoom ImageZoom Image


Fig. 11 Structures 64 and 65.
#


From the Chemical Bench to Preclinical Trials


In 1976, Ratnayake et al. found that extracts of the leaves and twigs of the native paw paw tree, Asimina triloba, were bioactive in the antitumour screens of the U. S. National Cancer Institute (NCI). 

Following the sound phytochemical studies on AGEs [77], Gu et al. used the three most active AGEs, bullatacin (14), asimicin (15) and trilobacin (65), to establish quality control over AGE extracts of the paw paw tree by LC/MS/MS [153]. 


In this study they identified that small twigs from the months of May and June were the optimum plant sources for the commercial harvest of biomass for extraction. They further tried to develop some useful commercial products containing the AGEs, including head lice shampoo (in 2001), ointment, lotion, spray for plant pests, andpaw paw capsules (in 2003) for human administration. The entire process from the safety and toxicology of the AGEs to the success of commercial products was described in McLaughlin's 2008 review [154].

More recently, Cuendet et al. reported the potential of the standardised extract from the twigs of A. triloba to mediate a cancer chemopreventative effect in the N-methyl-N-nitrosourea-induced mammary carcinogenesis model. 

As McLaughlin et al. did, they used three potent bioactive AGEs, bullatacin (14), asimicin (15), and trilobacin (65), in their standardised extract. Mammary tumour latency was increased from 55 to 66 days in Sprague-Dawley rats given a diet containing paw paw extract (1250 and 2500 mg/kg diet; based on maximum tolerated dose studies) [155].

In Taiwan, plants of the genus Annona are important economic crops for their edible fruits. The abundant material obtained from the seeds and the excellent cytotoxicities of the AGEs from this material attracted us to further develop pharmaceutical products. In addition to the aforementioned achievements, oral gavage (PO) animal studies have been performed by MDS Pharma Services and us.
The extract from A. muricata, WYC-AA07, was applied to the xenograft tumour model of human MCF-7 breast tumour cells on SCID mice (assay 580 000). WYC-AA07 at 10 mg/kg was administered daily by PO for a total of 10 doses. The tumour size, body weight and signs of overt animal toxicities after dosing were monitored and recorded for 25 days. WYC-AA07 at 10 mg/kg PO caused a significant decrease in the tumour weights from day 13 to day 25. 

 However, it also caused a significant decrease in body weight on days 9, 13, 17, and 21. The other experiment was done on the xenograft tumour model of human HT-29 colon tumours on SCID mice (assay 580 100). WYC-AA07 at 20 mg/kg PO caused death in one half of the animals and a significant decrease in body weight on day 8. Recently, we tested the toxicity of squamocin (3) on nude mice at 20 mg/kg PO. Although most of the animals showed an abnormal neuron function that caused the mice to move uncontrollably in a lateral direction, the mice recovered after we stopped the administration of squamocin (3). On the other hand, a ethnopharmacological investigation reported the similar side effect of AGEs that a neurodegenerative tauopathy endemic to the Caribbean island of Guadeloupe was suspected to be linked to the consumption of Annonaceous plants. Escobar-Khondiker et al. further found that annonacin (2) induced the retrograde transport of mitochondria to decrease ATP levels, which induces changes in the intracellular distribution of tau in a way that shares characteristics with some neurodegenerative diseases [156]. The possible adverse effect of AGEs on neuron cells should be a concern in advanced pharmaceutical applications for alternative therapy.
#


Perspectives

The AGEs are one of the most interesting classes of natural products appearing in the past two decades. They exhibit a wide variety of biological activities, and, impressively, some of them have comparable cytotoxic to taxol against various cancer cells. Both featured structures, the hydroxylated THF and γ-lactone ring moieties, are thought to be the pharmacophores that block the electron transport system of mitochondrial complex I. 
Much effort has been dedicated to elucidating the underlying cytotoxic mechanisms of the AGEs and to synthesising AGE analogues by altering the spacing between two moieties, removing either one of two critical featured structures (ΔLac AGEs or muricatacin), or mimicking the THF rings by ether linkages. Although none of the modified AGEs obtained thus far have demonstrated activities comparable to those of the naturally occurring AGEs, studies on the synthesis and mechanisms of action of these compounds established solid fundamental knowledge and drug discovery experience. For example, the studies on analogues of AGEs created a series of compounds that contain completely different skeletons, of which some also show excellent bioactivities against various cancer cells. In addition, in vivo tests in mice showed the antitumour effects and even some possible adverse effects of AGEs. However, there was no released data about the in vivo pharmacokinetic study of AGEs. Thus, more in vivo studies are necessary. Combined with the above information, it will be substantially helpful to further develop these types of compounds as new drugs.

#

References

  • 1 Cragg G M, Newman D J, Snader K M. Natural products in drug discovery and development.  J Nat Prod. 1997;  60 52-60
  • 2 Wani M C, Taylor H L, Wall M E, Coggon P, McPhail A T. Plant antitumor agents. VI. Isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia.  J Am Chem Soc. 1971;  93 2325-2327
  • 3 Wall M E, Wani M C, Cook C E, Palmer K H, McPhail A T, Sim G A. Plant antitumor agents. I. The isolation and structure of camptothecin, a novel alkaloidal leukemia and tumor inhibitor from Camptotheca acuminata.  J Am Chem Soc. 1966;  88 3888-3890
  • 4 Hartwell J L, Schrecker A W. Components of podophyllin. V. The constitution of podophyllotoxin.  J Am Chem Soc. 1951;  73 2909-2916
  • 5 Neuss N, Gorman M, Hargrove W, Cone N J, Biemann K, Buechi G, Manning R E. Vinca alkaloids. XXI. The structures of the oncolytic alkaloids vinblastine (VLB) and vincristine (VCR).  J Am Chem Soc. 1964;  86 1440-1442
  • 6 Arcamone F, Franceschi G, Penco S, Selva A. Adriamycin (14-hydroxydaunomycin), a novel antitumor antibiotic.  Tetrahedron Lett. 1969;  13 1007-1010
  • 7 Rupprecht J K, Hui Y H, McLaughlin J L. Annonaceous acetogenins: a review.  J Nat Prod. 1990;  53 237-278
  • 8 Zeng L, Ye Q, Oberlies H, Shi G, Gu Z M, He K, McLaughlin J L. Recent advances in annonaceous acetogenins.  Nat Prod Rep. 1996;  13 275-306
  • 9 Cave A, Figadere B, Laurens A, Cortes D. Acetogenins from Annonaceae. Progress in the chemistry of organic natural products, vol. 70. Berlin, Heidelberg; Springer Publisher 1997: 81-288
  • 10 Bermejo A, Figadere B, Zafra-Polo M C, Barrachina I, Estornell E, Cortes D. Acetogenins from Annonaceae. Recent progress in isolation, synthesis, and mechanisms of action.  Nat Prod Rep. 2005;  22 263-303
  • 11 Leboeuf M, Cave A, Bhaumik P K, Mukherjee B, Mukherjee R. The phytochemistry of the Annonaceae.  Phytochemistry. 1982;  21 2783-2813
  • 12 Wu Y C. New research and development on the Formosan annonaceous plants. Atta-ur-Rahman Studies in natural products chemistry, vol. 33. Amsterdam; Elsevier B.V. 2006: 957-1024
  • 13 Nakanishi Y, Chang F R, Liaw C C, Wu Y C, Bastow K F, Lee K H. Acetogenins as selective inhibitors of the human ovarian 1A9 tumor cell line.  J Med Chem. 2003;  46 3185-3188
  • 14 Jolad S D, Hoffmann J J, Schram K H, Cole J R. Uvaricin, a new antitumor agent from Uvaria accuminata (Annonaceae).  J Org Chem. 1982;  47 3151-3153
  • 15 McCloud T G, Smith D L, Chang C-J, Cassady J M. Annonacin, a novel, biologically active polyketide from Annona densicoma.  Experientia. 1987;  43 947-949
  • 16 Fujimoto Y, Eguchi T, Kakinuma K, Ikekawa N, Sahai M, Gupta Y K. Squamocin, a new cytotoxic bis-tetrahydrofuran containing acetogenin from Annona squamosa.  Chem Pharm Bull. 1988;  36 4802-4806
  • 17 Hui Y H, Rupprecht J K, Anderson J E, Liu Y M, Smith D L, Chang C J, McLaughlin J L. Bullatalicin, a novel bioactive acetogenin from Annona bullata (Annonaceae).  Tetrahedron. 1989;  45 6941-6948
  • 18 Cortes D, Rios J L, Villar A, Valverde S. Cherimoline et dihydrocherimoline: deux nouvelles γ-lactones bis-tetrahydrofuranniques possedant une activite antimicrobienne.  Tetrahedron Lett. 1984;  25 3199-3202
  • 19 Cortes D, Myint S H, Dupont B, Davoust D. Acetogenins of the Annonaceae. Part 20. Bioactive acetogenins from seeds of Annona cherimolia.  Phytochemistry. 1993;  32 1475-1482
  • 20 Rios J L, Cortes D, Valverde S. Acetogenins, aporphinoids, and azaanthraquinone from Annona cherimolia seeds.  Planta Med. 1989;  55 321-323
  • 21 Hoye T R, Suhadolnik J C. On the stereochemistry of the bistetrahydrofuranyl moiety of uvaricin. Proton chemical shifts can play a crucial role in complex structure determination.  J Am Chem Soc. 1987;  109 4402-4403
  • 22 Hoye T R, Zhuang Z P. Validation of the proton NMR chemical shift method for determination of stereochemistry in the bistetrahydrofuranyl moiety of uvaricin-related acetogenins from Annonaceae: rolliniastatin 1 (and asimicin).  J Org Chem. 1988;  53 5578-5580
  • 23 Pettit G R, Cragg G M, Polonsky J, Herald D L, Goswami A, Smith C R, Moretti C, Schmidt J M, Weisleder D. Isolation and structure of rolliniastat 1 from the South American tree Rollinia mucosa.  Can J Chem. 1987;  65 1433-1435
  • 24 Hui Y H, Rupprecht J K, Liu Y M, Anderson J E, Smith D L, Chang C J, McLaughlin J L. Bullatacin and bullatacinone: two highly potent bioactive acetogenins from Annona bullata.  J Nat Prod. 1989;  52 463-477
  • 25 Gawronski J, Wu Y C. A note on the determination of absolute configuration of acetogenins by circular dichroism.  Polish J Chem. 1999;  73 241-243
  • 26 Born L, Lieb F, Lorentzen J P, Moeschler H, Nonfon M, Soellner R, Wendisch D. The relative configuration of acetogenins isolated from Annona squamosa: annonin I (squamocin) and annonin VI.  Planta Med. 1990;  56 312-316
  • 27 Hoye T R, Suhadolnik J C. Symmetry-assisted synthesis of triepoxide stereoisomers of E,Z,E-dodeca-2,6,10-trien-1,12-diol and their cascade reactions to 2, 5-linked bistetrahydrofurans.  J Am Chem Soc. 1985;  107 5312-5313
  • 28 Huang T S. Flora of Taiwan, vol. 2. Taipei; Lungwei Printing Co. Ltd. 1996: 415-419
  • 29 Liao J C. A list of scientific names of woody plants in Taiwan. Taipei; College of Agriculture, National Taiwan University 1993
  • 30 Wu Y C, Chang G Y, Ko F N, Teng C M. Bioactive constituents from the stems of Annona montana.  Planta Med. 1995;  61 146-149
  • 31 Chen K S, Ko F N, Teng C M, Wu Y C. Antiplatelet and vasorelaxing actions of some aporphinoids.  Planta Med. 1996;  62 133-136
  • 32 Lin C H, Yang C M, Ko F N, Wu Y C, Teng C M. Antimuscarinic action of liriodenine, isolated form Fissistigma glaucescens, in canine tracheal smooth muscle.  Br J Pharmacol. 1994;  113 1464-1470
  • 33 Chang G J, Wu M H, Wu Y C, Su M J. Electrophysiological mechanisms for antiarrhythmic efficacy and positive inotropy of liriodenine, a natural aporphine alkaloid from Fissistigma glaucescens.  Br J Pharmacol. 1996;  118 1571-1583
  • 34 Ko F N, Yu S M, Su M J, Wu Y C, Teng C M. Pharmacological activity of (−)-discretamine, a novel vascular α-adrenoceptor and 5-hydroxytryptamine receptor antagonist, isolated from Fissistigma glaucescens.  Br J Pharmacol. 1993;  110 882-888
  • 35 Wu Y C, Chang F R, Duh C Y, Wang S K, Wu T S. Cytotoxic styrylpyrrones of Goniothalamus amuyon.  Phytochemistry. 1992;  31 2851-2853
  • 36 Wu Y C, Duh C Y, Chang F R, Chang G Y, Wang S K, Chang J J, McPhail D R, McPhail A T, Lee K H. The crystal structure and cytotoxicity of goniodiol-7-monoacetate from Goniothalamus amuyon.  J Nat Prod. 1991;  54 1077-1081
  • 37 Wu Y C, Chang F R, Chen K S, Liang S C, Lee M R. Studies on acetogenins from Formosan Annonaceous plants. 3. Diepoxymontin, a novel acetogenin from Annona montana.  Heterocycles. 1994;  38 1475-1478
  • 38 Wu Y C, Chang F R, Duh C Y, Wang S K. Annoreticuin and isoannoreticuin: two new cytotoxic acetogenins from Annona reticulata.  Heterocycles. 1992;  34 667-674
  • 39 Chang F R, Wu Y C, Duh C Y, Wang S K. Studies on the acetogenins of Formosan Annonaceous plants, II. Cytotoxic acetogenins from Annona reticulata.  J Nat Prod. 1993;  56 1688-1694
  • 40 Zhang L, Yang R, Wu X. Chemical compositions of Goniothalamus howii (I).  Zhiwu Xuebao. 1993;  35 390-396
  • 41 Yu J, Luo X, Sun L, Liu C, Hong S, Ma L. Squamostatin-B, a new polyketide from Annona squamosa (Annonaceae).  Chin Chem Lett. 1993;  4 423-426
  • 42 Li C M, Mu Q, Hao X J, Sun H D, Zheng H L, Wu Y C. Three new bioactive Annonaceous acetogeninins from Annona muricata.  Chin Chem Lett. 1994;  5 747-750
  • 43 Londershausen M, Leicht W, Lieb F, Moeschler H, Weiss H. Molecular mode of action of annonins.  Pestic Sci. 1991;  33 427-438
  • 44 Gu Z M, Fang X P, Miesbauer L R, Smith D L, McLaughlin J L. 30-, 31-, and 32-hydroxybullatacinones: bioactive terminally hydroxylated Annonaceous acetogenins from Annona bullata.  J Nat Prod. 1993;  56 870-876
  • 45 Gu Z M, Fang X P, Rieser M J, Hui Y H, Miesbauer L R, Smith D L, Wood K V, McLaughlin J L. New cytotoxic Annonaceous acetogenins: bullatanocin and cis- and trans-bullatanocinone, from Annona bullata (Annonaceae).  Tetrahedron. 1993;  49 747-754
  • 46 Gu Z M, Fang X P, Zeng L, Wood K V, McLaughlin J L. Bullacin: a new cytotoxic Annonaceous acetogenin from Annona bullata.  Heterocycles. 1993;  36 2221-2228
  • 47 Zafra-Polo M C, Figadere B, Gallardo T, Tormo J R, Cortes D. Natural acetogenins from Annonaceae, synthesis and mechanisms of action.  Phytochemistry. 1998;  48 1087-1117
  • 48 Rieser M J, Kozlowski J F, Wood K V, McLaughlin J L. Muricatacin: a simple biologically active acetogenin derivative from the seeds of Annona muricata (Annonaceae).  Tetrahedron Lett. 1991;  32 1137-1140
  • 49 Rieser M J, Hui Y H, Rupprecht J K, Kozlowski J F, Wood K V, McLaughlin J L, Hanson P R, Zhuang Z, Hoye T R. Determination of absolute configuration of stereogenic carbinol centers in Annonaceous acetogenins by proton and fluorine-19 NMR analysis of Mosher ester derivatives.  J Am Chem Soc. 1992;  114 10203-10213
  • 50 Fujimoto Y, Murasaki C, Shimada H, Nishioka S, Kakinuma K, Singh S, Singh M, Gupta Y K, Sahai M. Annonaceous acetogenins from the seeds of Annona squamosa. Non-adjacent bis-tetrahydrofuranic acetogenins.  Chem Pharm Bull. 1994;  42 1175-1184
  • 51 Yu J G, Hu X E, Ho D K, Bean M F, Stephens R E, Cassady J M, Brinen L S, Clardy J. Absolute stereochemistry of (+)-gigantecin from Annona coriacea (Annonaceae).  J Org Chem. 2002;  59 1598-1599
  • 52 Duret P, Laurens A, Hocquemiller R, Cortex D, Cave A. Acetogenins of Annonaceae. 34. Isoacetogenins, artifacts issued from translacationization from annonaceous acetogenins.  Heterocycles. 1994;  39 741-749
  • 53 Duret P, Figadere B, Hocquemiller R, Cave A. Epimerization of Annonaceous acetogenins under basic conditions.  Tetrahedron Lett. 1997;  38 8849-8852
  • 54 Hopp D C, Conway W D, McLaughlin J L. Using countercurrent chromatography to assist in the purification of new Annonaceous acetogenins from Annona squamosa.  Phytochem Anal. 1999;  10 339-347
  • 55 Duret P, Waechter A I, Margraff R, Foucault A, Hocquemiller R, Cave A. High-speed countercurrent chromatography: a promising method for the separation of the Annonaceous acetogenins.  J Liq Chromatogr Relat Technol. 1997;  20 627-635
  • 56 Duret P, Waechter A-I, Figadere B, Hocquemiller R, Cave A. Determination of absolute configurations of carbinols of Annonaceous acetogenins with 2-naphthylmethoxyacetic acid esters.  J Org Chem. 1998;  63 4717-4720
  • 57 Hirayama K, Akashi S, Yuji R, Niitsu U, Fujimoto Y. Structural studies of polyhydroxybis(tetrahydrofuran) acetogenins from Annona squamosa using the combination of chemical derivatization and precursor-ion scanning mass spectrometry.  Org Mass Spectrom. 1993;  28 1516-1524
  • 58 Gu Z M, Zhou D, Wu J, Shi G, Zeng L, McLaughlin J L. Screening for Annonaceous acetogenins in bioactive plant extracts by liquid chromatography/mass spectrometry.  J Nat Prod. 1997;  60 242-248
  • 59 Chang F R, Wu Y C. Novel cytotoxic Annonaceous acetogenins from Annona muricata.  J Nat Prod. 2001;  64 925-931
  • 60 Chang F R, Liaw C C, Lin C Y, Chou C J, Chiu H F, Wu Y C. New adjacent bis-tetrahydrofuran Annonaceous acetogenins from Annona muricata.  Planta Med. 2003;  69 241-246
  • 61 Liaw C C, Chang F R, Wu C C, Chen S L, Bastow Kenneth F, Hayashi K I, Nozaki H, Lee K H, Wu Y C. Nine new cytotoxic monotetrahydrofuranic Annonaceous acetogenins from Annona montana.  Planta Med. 2004;  70 948-959
  • 62 Liaw C C, Chang F R, Wu M J, Wu Y C. A novel constituent from Rollinia mucosa, rollicosin, and a new approach to develop Annonaceous acetogenins as potential antitumor agents.  J Nat Prod. 2003;  66 279-281
  • 63 Xie H H, Wei X Y, Wang J D, Liu M F, Yang R Z. A new cytotoxic acetogenin from the seeds of Annona squamosa.  Chin Chem Lett. 2003;  14 588-590
  • 64 Wolvetang E J, Johnson K L, Krauer K, Ralph S J, Linnane A W. Mitochondrial respiratory chain inhibitors induce apoptosis.  FEBS Lett. 1994;  339 40-44
  • 65 Chih H W, Chiu H F, Tang K S, Chang F R, Wu Y C. Bullatacin, a potent antitumor Annonaceous acetogenin, inhibits proliferation of human hepatocarcinoma cell line 2.2.15 by apoptosis induction.  Life Sci. 2001;  69 1321-1331
  • 66 Cartagena E, Colom O A, Neske A, Valdez J C, Bardon A. Effects of plant lactones on the production of biofilm of Pseudomonas aeruginosa.  Chem Pharm Bull. 2007;  55 22-25
  • 67 Ahammadsahib K I, Hollingworth R M, McGovren J P, Hui Y H, McLaughlin J L. Mode of action of bullatacin: a potent antitumor and pesticidal Anonaceous acetogenin.  Life Sci. 1993;  53 1113-1120
  • 68 Degli Esposti M, Ghelli A, Ratta M, Cortes D, Estornell E. Natural substances (acetogenins) from the family Annonaceae are powerful inhibitors of mitochondrial NADH dehydrogenase (complex I).  Biochem J. 1994;  301 161-167
  • 69 Oberlies N H, Jones J L, Corbett T H, Fotopoulos S S, McLaughlin J L. Tumor cell growth inhibition by several Anonaceous acetogenins in an in vitro disk diffusion assay.  Cancer Lett. 1995;  96 55-62
  • 70 Oberlies N H, Croy V L, Harrison M L, McLaughlin J L. The Anonaceous acetogenin bullatacin is cytotoxic against multidrug-resistant human mammary adenocarcinoma cells.  Cancer Lett. 1997;  115 73-79
  • 71 Shimada H, Grutzner J B, Kozlowski J F, McLaughlin J L. Membrane conformations and their relation to cytotoxicity of asimicin and its analogs.  Biochemistry. 1998;  37 854-866
  • 72 Kuwabara K, Takada M, Iwata J, Tatsumoto K, Sakamoto K, Iwamura H, Miyoshi H. Design syntheses and mitochondrial complex I inhibitory activity of novel acetogenin mimics.  Eur J Biochem. 2000;  267 2538-2546
  • 73 Yuan S S F, Chang H L, Chen H W, Yeh Y T, Kao Y H, Lin K H, Wu Y C, Su J H. Annonacin, a mono-tetrahydrofuran acetogenin, arrests cancer cells at the G1 phase and causes cytotoxicity in a Bax- and caspase-3-related pathway.  Life Sci. 2003;  72 2853-2861
  • 74 Yuan S S F, Chang H L, Chen H W, Kuo F C, Liaw C C, Su J H, Wu Y C. Selective cytotoxicity of squamocin on T24 bladder cancer cells at the S-phase via a Bax-, Bad-, and caspase-3-related pathways.  Life Sci. 2006;  78 869-874
  • 75 Lu M C, Yang S H, Hwang S L, Lu Y J, Lin Y H, Wang S R, Wu Y C, Lin S R. Induction of G2/M phase arrest by squamocin in chronic myeloid leukemia (K562) cells.  Life Sci. 2006;  78 2378-2383
  • 76 Rupprecht J K, Chang C J, Cassady J M, McLaughlin J L, Mikolajczak K L, Weisleder D. Asimicin, a new cytotoxic and pesticidal acetogenin from the pawpaw, Asimina triloba (Annonaceae).  Heterocycles. 1986;  24 1197-1201
  • 77 Ratnayake S, Rupprecht J K, Potter W M, McLaughlin J L. Evaluation of various parts of the paw paw tree, Asimina triloba (Annonaceae), as commercial sources of the pesticidal Anonaceous acetogenins.  J Econ Entomol. 1992;  85 2353-2356
  • 78 He K, Zeng L, Ye Q, Shi G, Oberlies N H, Zhao G X, Njoku C J, McLaughlin J L. Comparative structure-activity relationship evaluations of Anonaceous acetogenins for pesticidal activity.  Pestic Sci. 1997;  49 372-378
  • 79 Alali F Q, Kaakeh W, Bennett G W, McLaughlin J L. Annonaceous acetogenins as natural pesticides: potent toxicity against insecticide-susceptible and -resistant German cockroaches (Dictyoptera: Blattellidae).  J Econ Entomol. 1998;  91 641-649
  • 80 Ohsawa K, Atsuzawa S, Mitsui T, Yamamoto I. Isolation and insecticidal activity of three acetogenins from seeds of pond apple, Annona glabra L.  Nippon Noyaku Gakkaishi. 1991;  16 93-96
  • 81 Guadano A, Gutierrez C, De la Pena E, Cortes D, Gonzalez-Coloma A. Insecticidal and mutagenic evaluation of two Anonaceous acetogenins.  J Nat Prod. 2000;  63 773-776
  • 82 Lewis M A, Arnason J T, Philogene B J R, Rupprecht J K, McLaughlin J L. Inhibition of respiration at site I by asimicin, an insecticidal acetogenin of the pawpaw, Asimina triloba (Annonaceae).  Pestic Biochem Physiol. 1993;  45 15-23
  • 83 Friedrich T, Ohnishi T, Forche E, Kunze B, Jansen R, Trowitzsch W, Hoefle G, Reichenbach H, Weiss H. Two binding sites for naturally occurring inhibitors in mitochondrial and bacterial NADH : ubiquinone oxidoreductase (complex I).  Biochem Soc Trans. 1994;  22 226-230
  • 84 Hollingworth R M, Ahammadsahib K I, Gadelhak G, McLaughlin J L. New inhibitors of complex I of the mitochondrial electron transport chain with activity as pesticides.  Biochem Soc Trans. 1994;  22 230-233
  • 85 Miyoshi H, Ohshima M, Shimada H, Akagi T, Iwamura H, McLaughlin J L. Essential structural factors of Annonaceous acetogenins as potent inhibitors of mitochondrial complex I.  Biochim Biophys Acta. 1998;  1365 443-452
  • 86 Miyoshi H. Inhibitors of mitochondrial respiratory enzymes.  J Pestic Sci. 2005;  30 120-121
  • 87 Takada M, Kuwabara K, Nakato H, Tanaka A, Iwamura H, Miyoshi H. Definition of crucial structural factors of acetogenins, potent inhibitors of mitochondrial complex I.  Biochim Biophys Acta. 2000;  1460 302-310
  • 88 Murai M, Ichimaru N, Abe M, Nishioka T, Miyoshi H. Synthesis of photolabile Δlac-acetogenin for photoaffinity labeling of mitochondrial complex I.  J Pestic Sci. 2006;  31 156-158
  • 89 Ichimaru N, Yoshinaga N, Nishioka T, Miyoshi H. Effect of stereochemistry of Δlac-acetogenins on the inhibition of mitochondrial complex I (NADH-ubiquinone oxidoreductase).  Tetrahedron. 2007;  63 1127-1139
  • 90 Myint S H, Laurens A, Hocquemiller R, Cave A, Davoust D, Cortes D. Murisolin: a new cytotoxic mono-tetrahydrofuran-γ-lactone from Annona muricata.  Heterocycles. 1990;  31 861-867
  • 91 Hattori Y, Kimura Y, Moroda A, Konno H, Abe M, Miyoshi H, Goto T, Makabe H. Synthesis of murisolin, (15R,16R,19R,20S)-murisolin A, and (15R,16R,19S,20S)-16,19-cis-murisolin and their inhibitory action with bovine heart mitochondrial complex I.  Chem Asian J. 2006;  1 894-904
  • 92 Ye Q, Zeng L, Zhang Y, Zhao G X, McLaughlin J L, Woo M H, Evert D R. Longicin and goniothalamicinone: novel bioactive monotetrahydrofuran acetogenins from Asimina longifolia.  J Nat Prod. 1995;  58 1398-1406
  • 93 Hanessian S, Giroux S, Buffat M. Total synthesis and structural confirmation of (+)-longicin.  Org Lett. 2005;  7 3989-3992
  • 94 Gleye C, Duret P, Laurens A, Hocquemiller R, Cave A. cis-Monotetrahydrofuran acetogenins from the roots of Annona muricata.  J Nat Prod. 1998;  61 576-579
  • 95 Goksel H, Stark C B W. Total synthesis of cis-solamin: exploiting the RuO4-catalyzed oxidative cyclization of dienes.  Org Lett. 2006;  8 3433-3436
  • 96 Zhao H, Gorman J S T, Pagenkopf B L. Advances in Lewis acid controlled carbon-carbon bond-forming reactions enable a concise and convergent total synthesis of bullatacin.  Org Lett. 2006;  8 4379-4382
  • 97 Keum G, Hwang C H, Kang S B, Kim Y, Lee E. Stereoselective syntheses of rolliniastatin 1, rollimembrin, and membranacin.  J Am Chem Soc. 2005;  127 10396-10399
  • 98 Gonzalez M C, Tormo J R, Bermejo A, Zafra-Polo M C, Estornell E, Cortes D. Rollimembrin, a novel acetogenin inhibitor of mammalian mitochondrial complex I.  Bioorg Med Chem Lett. 1997;  7 1113-1118
  • 99 He K, Shi G, Zhao G X, Ye Q, Schwedler J T, Wood K V, McLaughlin J L. Three new adjacent bis-tetrahydrofuran acetogenins with four hydroxyl groups from Asimina triloba.  J Nat Prod. 1996;  59 1029-1034
  • 100 Nattrass G L, Diez E, McLachlan M M, Dixon D J, Ley S V. The total synthesis of the Annonaceous acetogenin 10-hydroxyasimicin.  Angew Chem Int Ed Engl. 2005;  44 580-584
  • 101 Saez J, Sahpaz S, Villaescusa L, Hocquemiller R, Cave A, Cortes D. Acetogenins of the Annonaceae. 18. Rioclarin and membranacin, two new bis-tetrahydrofuran acetogenins of the seeds of Rollinia membranacea.  J Nat Prod. 1993;  56 351-356
  • 102 Marshall J A, Sabatini J J. An outside-in approach to adjacent bistetrahydrofuran Annonaceous acetogenins with C 2 core symmetry. Total synthesis of asimicin and a C32 analogue.  Org Lett. 2006;  8 3557-3560
  • 103 Ye Q, He K, Oberlies N H, Zeng L, Shi G, Evert D, McLaughlin J L. Longimicins A – D: novel bioactive acetogenins from Asimina longifolia (Annonaceae) and structure-activity relationships of asimicin type of annonaceous acetogenins.  J Med Chem. 1996;  39 1790-1796
  • 104 Tominaga H, Maezaki N, Yanai M, Kojima N, Urabe D, Ueki R, Tanaka T. First total synthesis of longimicin D.  Eur J Org Chem. 2006;  2006 1422-1429
  • 105 Shi G, Kozlowski J F, Schwedler J T, Wood K V, MacDougal J M, McLaughlin J L. Muconin and mucoxin: additional nonclassical bioactive acetogenins from Rollinia mucosa.  J Org Chem. 1996;  61 7988-7989
  • 106 Narayan R S, Borhan B. Synthesis of the proposed structure of mucoxin via regio- and stereoselective tetrahydrofuran ring-forming strategies.  J Org Chem. 2006;  71 1416-1429
  • 107 Shi G, Zheng L, Gu Z-M, MacDougal J M, McLaughlin J L. Absolute stereochemistries of sylvaticin and 12,15-cis-sylvaticin, bioactive C-20,23-cis nonadjacent bistetrahydrofuran Annonaceous acetogenins, from Rollinia mucosa.  Heterocycles. 1995;  41 1785-1796
  • 108 Donohoe T J, Harris R M, Burrows J, Parker J. Total synthesis of (+)-cis-sylvaticin: double oxidative cyclization reactions catalyzed by osmium.  J Am Chem Soc. 2006;  128 13704-13705
  • 109 Alkofahi A, Rupprecht J K, Liu Y M, Chang C J, Smith D L, McLaughlin J L. Gigantecin: a novel antimitotic and cytotoxic acetogenin, with nonadjacent tetrahydrofuran rings, from Goniothalamus giganteus (Annonaceae).  Experientia. 1990;  46 539-541
  • 110 Hoye T R, Eklov B M, Jeon J, Khoroosi M. Sequencing of three-component olefin metatheses: total synthesis of either (+)-gigantecin or (+)-14-deoxy-9-oxygigantecin.  Org Lett. 2006;  8 3383-3386
  • 111 Chavez D, Acevedo L A, Mata R. Jimenezin, a novel Annonaceous acetogenin from the seeds of Rollinia mucosa containing adjacent tetrahydrofuran-tetrahydropyran ring systems.  J Nat Prod. 1998;  61 419-421
  • 112 Bandur N G, Bruckner D, Hoffmann R W, Koert U. Total synthesis of jimenezin via an intramolecular allylboration.  Org Lett. 2006;  8 3829-3831
  • 113 Shi G, Alfonso D, Fatope M O, Zeng L, Gu Z M, Zhao G X, He K, MacDougal J M, McLaughlin J L. Mucocin: a new Annonaceous acetogenin bearing a tetrahydropyran ring.  J Am Chem Soc. 1995;  117 10409-10410
  • 114 Crimmins M T, Zhang Y, Diaz F A. Total synthesis of (−)-mucocin.  Org Lett. 2006;  8 2369-2372
  • 115 Alali F Q, Rogers L, Zhang Y, McLaughlin J L. Unusual bioactive Annonaceous acetogenins from Goniothalamus giganteus.  Tetrahedron. 1998;  54 5833-5844
  • 116 Strand D, Rein T. Total synthesis of pyranicin.  Org Lett. 2004;  7 199-202
  • 117 Strand D, Rein T. Synthesis of pyragonicin.  Org Lett. 2005;  7 2779-2781
  • 118 Takahashi S, Ogawa N, Koshino H, Nakata T. Total synthesis of the proposed structure for pyragonicin.  Org Lett. 2005;  7 2783-2786
  • 119 Quinn K J, Isaacs A K, DeChristopher B A, Szklarz S C, Arvary R A. Asymmetric total synthesis of rollicosin.  Org Lett. 2005;  7 1243-1245
  • 120 Makabe H, Kimura Y, Higuchi M, Konno H, Murai M, Miyoshi H. Synthesis of (4R,15R,16R,21S)- and (4R,15S,16S,21S)-rollicosin, squamostolide, and their inhibitory action with bovine heart mitochondrial complex I.  Bioorg Med Chem. 2006;  14 3119-3130

  • 121 Hoppen S, Emde U, Friedrich T, Grubert L, Koert U. Natural-product hybrids: design, synthesis, and biological evaluation of quinone-Annonaceous acetogenins.  Angew Chem Int Ed Engl. 2000;  39 2099-2102
  • 122 Arndt S, Emde U, Baurle S, Friedrich T, Grubert L, Koert U. Quinone-Annonaceous acetogenins: synthesis and complex I inhibition studies of a new class of natural product hybrids.  Chem Eur J. 2001;  7 993-1005
  • 123 Duval R, Lewin G, Hocquemiller R. Semisynthesis of heterocyclic analogues of squamocin, a cytotoxic annonaceous acetogenin, by an unusual oxidative decarboxylation reaction.  Bioorg Med Chem. 2003;  11 3439-3446
  • 124 Duval R A, Lewin G, Peris E, Chahboune N, Garofano A, Droese S, Cortes D, Brandt U, Hocquemiller R. Heterocyclic analogues of squamocin as inhibitors of mitochondrial complex I. On the role of the terminal lactone of Annonaceous acetogenins.  Biochemistry. 2006;  45 2721-2728
  • 125 Duval R A, Poupon E, Romero V, Peris E, Lewin G, Cortes D, Brandt U, Hocquemiller R. Analogues of cytotoxic squamocin using reliable reactions: new insights into the reactivity and role of the α,β-unsaturated lactone of the Annonaceous acetogenins.  Tetrahedron. 2006;  62 6248-6257
  • 126 Kojima N, Fushimi T, Maezaki N, Tanaka T, Yamori T. Synthesis of hybrid acetogenins, α,β-unsaturated-γ-lactone-free nitrogen-containing heterocyclic analogues, and their cytotoxicity against human cancer cell lines.  Bioorg Med Chem Lett. 2008;  18 1637-1641
  • 127 Zeng B B, Wu Y, Yu Q, Wu Y L, Li Y, Chen X G. Enantiopure simple analogues of Annonaceous acetogenins with remarkable selective cytotoxicity towards tumor cell lines.  Angew Chem Int Ed. 2000;  39 1934-1937
  • 128 Rodier S, Le Huerou Y, Renoux B, Doyon J, Renard P, Pierre A, Gesson J P, Gree R. Synthesis and cytotoxic activity of acetogenin analogues.  Bioorg Med Chem Lett. 2000;  10 1373-1375
  • 129 Yao Z J, Wu H P, Wu Y L. Polyether mimics of naturally occurring cytotoxic Annonaceous acetogenins.  J Med Chem. 2000;  43 2484-2487
  • 130 Jiang S, Liu Z H, Sheng G, Zeng B B, Cheng X G, Wu Y L, Yao Z J. Mimicry of Annonaceous acetogenins: enantioselective synthesis of a (4R)-hydroxy analogue having potent antitumor activity.  J Org Chem. 2002;  67 3404-3408
  • 131 Zeng B B, Wu Y, Jiang S, Yu Q, Yao Z J, Liu Z H, Li H Y, Li Y, Chen X G, Wu Y L. Studies on mimicry of naturally occurring Annonaceous acetogenins: non-THF analogues leading to remarkable selective cytotoxicity against human tumor cells.  Chem Eur J. 2003;  9 282-290
  • 132 Rodier S, Le Huerou Y, Renoux B, Doyon J, Renard P, Pierre A, Gesson J P, Gree R. New cytotoxic analogues of Annonaceous acetogenins.  Anticancer Drug Des. 2001;  16 109-117
  • 133 Fujita D, Ichimaru N, Abe M, Murai M, Hamada T, Nishioka T, Miyoshi H. Synthesis of non-THF analogs of acetogenin toward simplified mimics.  Tetrahedron Lett. 2005;  46 5775-5779
  • 134 Liu H X, Huang G R, Zhang H M, Wu J R, Yao Z J. Annonaceous acetogenin mimics bearing a terminal lactam and their cytotoxicity against cancer cells.  Bioorg Med Chem Lett. 2007;  17 3426-3430
  • 135 Liu H X, Shao F, Li G Q, Xun G L, Yao Z J. Tuning the acyclic ether moiety of anticancer agent AA005 with conformationally constrained fragments.  Chem Eur J. 2008;  14 8632-8639
  • 136 Ye Q, Shi G, He K, McLaughlin J L. Chlorinated Annonaceous acetogenins and their bioactivities.  J Nat Prod. 1996;  59 994-996
  • 137 Kojima N, Hayashi H, Suzuki S, Tominaga H, Maezaki N, Tanaka T, Yamori T. Synthesis of C4-fluorinated solamins and their growth inhibitory activity against human cancer cell lines.  Bioorg Med Chem Lett. 2008;  18 6451-6453
  • 138 Gallardo T, Saez J, Granados H, Tormo J R, Velez I D, Brun N, Torres B, Cortes D. 10-Oximeguanacone, the first nitrogenated acetogenin derivative found to be a potent inhibitor of mitochondrial complex I.  J Nat Prod. 1998;  61 1001-1005
  • 139 Duret P, Hocquemiller R, Gantier J C, Figadere B. Semisynthesis and cytotoxicity of amino acetogenins and derivatives.  Bioorg Med Chem. 1999;  7 1821-1826
  • 140 Derbre S, Roue G, Poupon E, Susin Santos A, Hocquemiller R. Annonaceous acetogenins: the hydroxyl groups and THF rings are crucial structural elements for targeting the mitochondria, demonstration with the synthesis of fluorescent squamocin analogues.  Chembiochem. 2005;  6 979-982
  • 141 Alexander M D, Burkart M D, Leonard M S, Portonovo P, Liang B, Ding X, Joullie M M, Gulledge B M, Aggen J B, Chamberlin A R, Sandler J, Fenical W, Cui J, Gharpure S J, Polosukhin A, Zhang H R, Evans P A, Richardson A D, Harper M K, Ireland C M, Vong B G, Brady T P, Theodorakis E A, La Clair J J. A central strategy for converting natural products into fluorescent probes.  Chembiochem. 2006;  7 409-416
  • 142 Maezaki N, Urabe D, Yano M, Tominaga H, Morioka T, Kojima N, Tanaka T. Synthesis of fluorescent solamin for visualization of cell distribution.  Heterocycles. 2007;  73 159-164
  • 143 Kojima N, Morioka T, Yano M, Suga Y, Maezaki N, Tanaka T. Convergent synthesis of fluorescence labeled solamin.  Heterocycles. 2009;  79 387-393
  • 144 Liu H X, Huang G R, Zhang H M, Jiang S, Wu J R, Yao Z J. A structure-activity guided strategy for fluorescent labeling of Annonaceous acetogenin mimetics and their application in cell biology.  Chembiochem. 2007;  8 172-177
  • 145 Zafra-Polo M C, Gonzalez M C, Estornell E, Sahpaz S, Cortes D. Acetogenins from Annonaceae, inhibitors of mitochondrial complex I.  Phytochemistry. 1996;  42 253-271
  • 146 Sasaki S, Naito H, Maruta K, Kawahara E, Maeda M. Novel calcium ionophores: supramolecular complexation by the hydroxylated-bistetrahydrofuran skeleton of potent antitumor annocnaceous acetogenins.  Tetrahedron Lett. 1994;  35 3337-3340
  • 147 Araya H, Fujimoto Y, Hirayama K. Structural elucidation of tetrahydrofuranic acetogenins by means of precursor-ion scanning method.  Yuki Gosei Kagaku Kyokaishi. 1994;  52 765-777
  • 148 Sasaki S, Maruta K, Naito H, Sugihara H, Hiratani K, Maeda M. New calcium-selective electrodes based on Annonaceous acetogenins and their analogs with neighboring bistetrahydrofuran.  Tetrahedron Lett. 1995;  36 5571-5574
  • 149 Sasaki S, Maruta K, Naito H, Maemura R, Kawahara E, Maeda M. Novel acyclic ligands for metal cations based on the adjacent bistetrahydrofuran as analogs of natural Annonaceous acetogenins.  Tetrahedron. 1998;  54 2401-2410
  • 150 Peyrat J F, Mahuteau J, Figadere B, Cave A. NMR studies of Ca2+ complexes of Annonaceous acetogenins.  J Org Chem. 1997;  62 4811-4815
  • 151 Wu S N, Chiang H T, Chang F R, Liaw C C, Wu Y C. Stimulatory effects of squamocin, an Annonaceous acetogenin, on Ca2+-activated K+ current in cultured smooth muscle cells of human coronary artery.  Chem Res Toxicol. 2003;  16 15-22
  • 152 Liaw C C, Yang Y L, Chen M, Chang F R, Chen S L, Wu S H, Wu Y C. Mono-tetrahydrofuran Annonaceous acetogenins from Annona squamosa as cytotoxic agents and calcium ion chelators.  J Nat Prod. 2008;  71 764-771
  • 153 Gu Z M, Zhou D, Lewis N J, Wu J, Johnson H A, McLaughlin J L, Gordon J. Quantitative evaluation of Annonaceous acetogenins in monthly samples of paw paw (Asimina triloba) twigs by liquid chromatography/electrospray ionization/tandem mass spectrometry.  Phytochem Anal. 1999;  10 32-38
  • 154 McLaughlin J L. Paw paw and cancer: Annonaceous acetogenins from discovery to commercial products.  J Nat Prod. 2008;  71 1311-1321
  • 155 Cuendet M, Oteham C P, Moon R C, Keller W J, Peaden P A, Pezzuto J M. Dietary administration of Asimina triloba (Paw Paw) extract increases tumor latency in N-methyl-N-nitrosourea-treated rats.  Pharm Biol. 2008;  46 3-7
  • 156 Escobar-Khondiker M, Hoellerhage M, Muriel M P, Champy P, Bach A, Depienne C, Respondek G, Yamada E S, Lannuzel A, Yagi T, Hirsch Etienne C, Oertel W H, Jacob R, Michel P P, Ruberg M, Hoeglinger G U. Annonacin, a natural mitochondrial complex I inhibitor, causes Tau pathology in cultured neurons.  J Neurosci. 2007;  27 7827-7837

    Dr. Yang-Chang Wu

    Graduate Institute of Natural Products
    Kaohsiung Medical University
    100 Shih-Chuan 1st Road
    703 Kaohsiung
    Taiwan
    Republic of China
    Phone: + 88 6 73 12 11 01ext. 21 97
    Email: yachwu@kmu.edu.tw
    _
    https://www.thieme-connect.com/products/ejournals/html/10.1055/s-0030-1250006 



http://graviola.fi


________
___
___
___
___
___
___
___
___
___
Lähettänyt GraviolaTeam Finland klo 14.21 Ei kommentteja:
Kohteen lähettäminen sähköpostitseBloggaa tästä!Jaa X:ssäJaa FacebookiinJaa Pinterestiin
Tunnisteet: anticancer, antiparasitic, bioactivity, Historic Perspectives on Annonaceous Acetogenins from the Chemical Bench to Preclinical Trials, insecticidal and immunosuppressive effects

sunnuntai 1. helmikuuta 2015

Turmeric Produces 'Remarkable' Recovery in Alzheimer's Patients

Posted on:Monday, June 10th 2013 at 9:00 am
Written By: Sayer Ji, Founder
 

Turmeric has been used in India for over 5,000 years, which is likely why still today both rural and urban populations have some of the lowest prevalence rates of Alzheimer's disease (AD) in the world.
A recent study on patients with AD found that less than a gram of turmeric daily, taken for three months, resulted in 'remarkable improvements.'

Alzheimer's Disease: A Disturbingly Common Modern Rite of Passage

A diagnosis of Alzheimer's disease (AD), sadly, has become a rite of passage in so-called developed countries.  AD is considered the most common form of dementia, which is defined as a serious loss of cognitive function in previously unimpaired persons, beyond what is expected from normal aging.
A 2006 study estimated that 26 million people throughout the world suffer from this condition, and that by 2050, the prevalence will quadruple, by which time 1 in 85 persons worldwide will be afflicted with the disease.[1]
Given the global extent of the problem, interest in safe and effective preventive and therapeutic interventions within the conventional medical and alternative professions alike are growing.
Unfortunately, conventional drug-based approaches amount to declaring chemical war upon the problem, a mistake which we have documented elsewhere, and which can result in serious neurological harm, as evidenced by the fact that this drug class carries an alarmingly high risk for seizures, according to World Health Organization post-marketing surveillance statistics.[i][2]
What the general public is therefore growing most responsive to is using time-tested, safe, natural and otherwise more effective therapies that rely on foods, spices and familiar culinary ingredients.

Remarkable Recoveries Reported after Administration of Turmeric

Late last year, a remarkable study was published in the journal Ayu titiled "Effects of turmeric on Alzheimer's disease with behavioral and psychological symptoms of dementia." [ii]  Researchers described three patients with Alzheimer's disease whose behavioral symptoms were "improved remarkably" as a result of consuming 764 milligram of turmeric (curcumin 100 mg/day) for 12 weeks. According to the study:
"All three patients exhibited irritability, agitation, anxiety, and apathy, two patients suffer from urinary incontinence and wonderings. They were prescribed turmeric powder capsules and started recovering from these symptoms without any adverse reaction in the clinical symptom and laboratory data."
After only 3 months of treatment, both the patients' symptoms and the burden on their caregivers were significantly decreased.
The report describes the improvements thusly:
"In one case, the Mini-Mental State Examination (MMSE) score was up five points, from 12/30 to 17/30. In the other two cases, no significant change was seen in the MMSE; however, they came to recognize their family within 1 year treatment. All cases have been taking turmeric for more than 1 year, re-exacerbation of BPSD was not seen."
This study illustrates just how powerful a simple natural intervention using a time-tested culinary herb can be.  Given that turmeric has been used medicinally and as a culinary ingredient for over 5,000 years in Indian culture, even attaining the status of a 'Golden Goddess,' we should not be surprised at this result. Indeed, epidemiological studies of Indian populations reveal that they have a remarkably lower prevalence of Alzheimer's disease relative to Western nations, [3] and this is true for both rural and more "Westernized" urban areas of India.[4]
Could turmeric be a major reason for this?

Turmeric's Anti-Alzheimer's Properties.

The GreenMedInfo.com database now contains a broad range of published studies on the value of turmeric, and its primary polyphenol curcumin (which gives it its golden hue), for Alzheimer's disease prevention and treatment.*
While there are 114 studies on our Turmeric research page indicating turmeric has a neuroprotective set of physiological actions, [5] 30 of these studies are directly connected to turmeric's anti-Alzheimer's disease properties.**
Two of these studies are particularly promising, as they reveal that curcumin is capable of enhancing the clearance of the pathological amyloid–beta plaque in Alzheimer's disease patients,[6] and that in combination with vitamin D3 the neurorestorative process is further enhanced.[7] Additional preclinical research indicates curcumin (and its analogs) has inhibitory and protective effects against Alzheimer's disease associated β-amyloid proteins.[8] [9] [10]

Other documented Anti-Alzheimer's mechanisms include:

  • Anti-inflammatory: Curcumin has been found to play a protective role against β-amyloid protein associated inflammation.[11]
  • Anti-oxidative: Curcumin may reduce damage via antioxidant properties.[12]
  • Anti-cytotoxic: Curcumin appears to protect against the cell-damaging effects of β-amyloid proteins.[13] [14]
  • Anti-amyloidogenic: Turmeric contains a variety of compounds (curcumin, tetrahydrocurcumin, demethoxycurcumin and bisdemethoxycurcumin) which may strike to the root pathological cause of Alzheimer's disease by preventing β-amyloid protein formation.[15] [16] [17] [18]
  • Neurorestorative: Curcuminoids appear to rescue long-term potentiation (an indication of functional memory) impaired by amyloid peptide, and may reverse physiological damage by restoring distorted neurites and disrupting existing plaques. [19] [20]
  • Metal-chelating properties: Curcumin has a higher binding affinity for iron and copper rather than zinc, which may contribute to its protective effect in Alzheimer's disease, as iron-mediated damage may play a pathological role.[21] [22]

Just The Tip of the Medicine Spice Cabinet

The modern kitchen pantry contains a broad range of anti-Alzheimer's disease items, which plenty of science now confirms. Our Alzheimer's research page contains research on 97 natural substances of interest. Top on the list, of course, is curcumin. Others include:
  • Coconut Oil: This remarkable substance contains approximately 66% medium chain triglycerides by weight, and is capable of improving symptoms of cognitive decline in those suffering from dementia by increasing brain-boosing ketone bodies, and perhaps more remarkably, within only one dose, and within only two hours.[23]
  • Cocoa: A 2009 study found that cocoa procyanidins may protect against lipid peroxidation associated with neuronal cell death in a manner relevant to Alzheimer's disease.[24]
  • Sage: A 2003 study found that sage extract has therapeutic value in patients with mild to moderate Alzheimer's disease.[25]
  • Folic acid: While most of the positive research on this B vitamin has been performed on the semi-synthetic version, which may have unintended, adverse health effects,  the ideal source for this B vitamin is foliage, i.e. green leafy vegetables, as only foods provide folate. Also, the entire B group of vitamins, especially including the homocysteine-modulating B6 and B12,[26] may have the most value in Alzheimer's disease prevention and treatment. 
  • Resveratrol: this compound is mainly found in the Western diet in grapes, wine, peanuts and chocolate. There are 16 articles on our website indicating it has anti-Alzheimer's properties.[27]
Other potent natural therapies include:
  • Gingko biloba: is one of the few herbs proven to be at least as effective as the pharmaceutical drug Aricept in treating and improving symptoms of Alzheimer's disease.[28] [29]
  • Melissa offinalis: this herb, also known as Lemon Balm, has been found to have therapeutic effect in patients with mild to moderate Alzheimer's disease.[30]
  • Saffron: this herb compares favorably to the drug donepezil in the treatment of mild-to-moderate Alzheimer's disease.[31]
As always, the important thing to remember is that it is our diet and environmental exposures that largely determine our risk of accelerated brain aging and associated dementia. Prevention is an infinitely better strategy, especially considering many of the therapeutic items mentioned above can be used in foods as spices.  Try incorporating small, high-quality culinary doses of spices like turmeric into your dietary pattern, remembering that 'adding it to taste,' in a way that is truly enjoyable, may be the ultimate standard for determining what a 'healthy dose' is for you.
 
Notes:
*This statement is not meant to be used to prevent, diagnosis, treat, or cure a disease; rather, it is a statement of fact: the research indexed on our database indicates it
**Our professional database users are empowered to employ the 'Advanced Database Options' listed on the top of the Turmeric research page and after clicking the function "Sort Quick Summaries by Title Alphabetically" under  "Available Sorting Options" they can quickly retrieve an alphabetical list of all 613 diseases relevant to the Turmeric research, and then choosing the "Focus" articles selection to the right of the "Alzheimer's disease" heading to see only the 30 study abstracts relevant to the topic.


Resources



[1] Ron Brookmeyer, Elizabeth Johnson, Kathryn Ziegler-Graham, H Michael Arrighi. Forecasting the global burden of Alzheimer's disease. Alzheimers Dement. 2007 Jul ;3(3):186-91. PMID: 19595937
[2] Nozomi Hishikawa, Yoriko Takahashi, Yoshinobu Amakusa, Yuhei Tanno, Yoshitake Tuji, Hisayoshi Niwa, Nobuyuki Murakami, U K Krishna. Effects of turmeric on Alzheimer's disease with behavioral and psychological symptoms of dementia. Ayu. 2012 Oct ;33(4):499-504. PMID: 23723666
[3] V Chandra, R Pandav, H H Dodge, J M Johnston, S H Belle, S T DeKosky, M Ganguli. Incidence of Alzheimer's disease in a rural community in India: the Indo-US study. Neurology. 2001 Sep 25 ;57(6):985-9. PMID: 11571321
[4] GreenMedInfo.com, Declaring Chemical Warfare Against Alzheimer's.
[5] GreenMedInfo.com, Turmeric's Neuroprotective Properties (114 study abstracts)
[6] Laura Zhang, Milan Fiala, John Cashman, James Sayre, Araceli Espinosa, Michelle Mahanian, Justin Zaghi, Vladimir Badmaev, Michael C Graves, George Bernard, Mark Rosenthal. Curcuminoids enhance amyloid-beta uptake by macrophages of Alzheimer's disease patients. J Alzheimers Dis. 2006 Sep;10(1):1-7. PMID: 16988474
[7] Ava Masoumi, Ben Goldenson, Senait Ghirmai, Hripsime Avagyan, Justin Zaghi, Ken Abel, Xueying Zheng, Araceli Espinosa-Jeffrey, Michelle Mahanian, Phillip T Liu, Martin Hewison, Matthew Mizwickie, John Cashman, Milan Fiala. 1alpha,25-dihydroxyvitamin D3 interacts with curcuminoids to stimulate amyloid-beta clearance by macrophages of Alzheimer's disease patients. J Alzheimers Dis. 2009 Jul;17(3):703-17. PMID: 19433889
[8] Hongying Liu, Zhong Li, Donghai Qiu, Qiong Gu, Qingfeng Lei, Li Mao. The inhibitory effects of different curcuminoids onβ-amyloid protein, β-amyloid precursor protein and β-site amyloid precursor protein cleaving enzyme 1 in swAPP HEK293 cells. Int Dent J. 1996 Feb;46(1):22-34. PMID: 20727383
[9] Shilpa Mishra, Mamata Mishra, Pankaj Seth, Shiv Kumar Sharma. Tetrahydrocurcumin confers protection against amyloidβ-induced toxicity. Neuroreport. 2010 Nov 24. Epub 2010 Nov 24. PMID: 21116204
[10] Xiao-Yan Qin, Yong Cheng, Long-Chuan Yu. Potential protection of curcumin against intracellular amyloid beta-induced toxicity in cultured rat prefrontal cortical neurons. Neurosci Lett. 2010 Aug 9;480(1):21-4. PMID: 20638958
[11] Hong-Mei Wang, Yan-Xin Zhao, Shi Zhang, Gui-Dong Liu, Wen-Yan Kang, Hui-Dong Tang, Jian-Qing Ding, Sheng-Di Chen. PPARgamma agonist curcumin reduces the amyloid-beta-stimulated inflammatory responses in primary astrocytes. J Alzheimers Dis. 2010;20(4):1189-99. PMID: 20413894
[12] G P Lim, T Chu, F Yang, W Beech, S A Frautschy, G M Cole. The curry spice curcumin reduces oxidative damage and amyloid pathology in an Alzheimer transgenic mouse. J Neurosci. 2001 Nov 1;21(21):8370-7. PMID: 11606625
[13] Xiao-Yan Qin, Yong Cheng, Long-Chuan Yu. Potential protection of curcumin against intracellular amyloid beta-induced toxicity in cultured rat prefrontal cortical neurons. Neurosci Lett. 2010 Aug 9;480(1):21-4. PMID: 20638958
[14] D S Kim, S Y Park, J K Kim. Curcuminoids from Curcuma longa L. (Zingiberaceae) that protect PC12 rat pheochromocytoma and normal human umbilical vein endothelial cells from betaA(1-42) insult. Neurosci Lett. 2001 Apr 27;303(1):57-61. PMID: 11297823
[15] R Douglas Shytle, Paula C Bickford, Kavon Rezai-zadeh, L Hou, Jin Zeng, Jun Tan, Paul R Sanberg, Cyndy D Sanberg, Bill Roschek, Ryan C Fink, Randall S Alberte. Optimized turmeric extracts have potent anti-amyloidogenic effects. Curr Alzheimer Res. 2009 Dec;6(6):564-71. PMID: 19715544
[16] Fusheng Yang, Giselle P Lim, Aynun N Begum, Oliver J Ubeda, Mychica R Simmons, Surendra S Ambegaokar, Pingping P Chen, Rakez Kayed, Charles G Glabe, Sally A Frautschy, Gregory M Cole. Curcumin inhibits formation of amyloid beta oligomers and fibrils, binds plaques, and reduces amyloid in vivo. Neurochem Int. 2009 Mar-Apr;54(3-4):199-204. Epub 2008 Nov 30. PMID: 15590663
[17] Can Zhang, Andrew Browne, Daniel Child, Rudolph E Tanzi. Curcumin decreases amyloid-beta peptide levels by attenuating the maturation of amyloid-beta precursor protein. Gastroenterology. 2006 Jan;130(1):120-6. PMID: 20622013
[18] Ranjit K Giri, Vikram Rajagopal, Vijay K Kalra. Curcumin, the active constituent of turmeric, inhibits amyloid peptide-induced cytochemokine gene expression and CCR5-mediated chemotaxis of THP-1 monocytes by modulating early growth response-1 transcription factor. J Neurochem. 2004 Dec;91(5):1199-210. PMID: 15569263
[19] Touqeer Ahmed, Anwarul-Hassan Gilani, Narges Hosseinmardi, Saeed Semnanian, Syed Ather Enam, Yaghoub Fathollahi. Curcuminoids rescue long-term potentiation impaired by amyloid peptide in rat hippocampal slices. Synapse. 2010 Oct 20. Epub 2010 Oct 20. PMID: 20963814
[20] M Garcia-Alloza, L A Borrelli, A Rozkalne, B T Hyman, B J Bacskai. Curcumin labels amyloid pathology in vivo, disrupts existing plaques, and partially restores distorted neurites in an Alzheimer mouse model. J Neurochem. 2007 Aug;102(4):1095-104. Epub 2007 Apr 30. PMID: 17472706
[21] Larry Baum, Alex Ng. Curcumin interaction with copper and iron suggests one possible mechanism of action in Alzheimer's disease animal models. J Alzheimers Dis. 2004 Aug;6(4):367-77; discussion 443-9. PMID: 15345806
[22] Silvia Mandel, Tamar Amit, Orit Bar-Am, Moussa B H Youdim. Iron dysregulation in Alzheimer's disease: multimodal brain permeable iron chelating drugs, possessing neuroprotective-neurorescue and amyloid precursor protein-processing regulatory activities as therapeutic agents. Prog Neurobiol. 2007 Aug;82(6):348-60. Epub 2007 Jun 19. PMID: 17659826
[23] Mark A Reger, Samuel T Henderson, Cathy Hale, Brenna Cholerton, Laura D Baker, G S Watson, Karen Hyde, Darla Chapman, Suzanne Craft. Effects of beta-hydroxybutyrate on cognition in memory-impaired adults. Neurobiol Aging. 2004 Mar;25(3):311-4. PMID: 15123336
[24] Eun Sun Cho, Young Jin Jang, Nam Joo Kang, Mun Kyung Hwang, Yong Taek Kim, Ki Won Lee, Hyong Joo Lee. Cocoa procyanidins attenuate 4-hydroxynonenal-induced apoptosis of PC12 cells by directly inhibiting mitogen-activated protein kinase kinase 4 activity. Free Radic Biol Med. 2009 May 15;46(10):1319-27. Epub 2009 Feb 25. PMID: 19248828
[25] S Akhondzadeh, M Noroozian, M Mohammadi, S Ohadinia, A H Jamshidi, M Khani. Salvia officinalis extract in the treatment of patients with mild to moderate Alzheimer's disease: a double blind, randomized and placebo-controlled trial. J Clin Pharm Ther. 2003 Feb;28(1):53-9. PMID: 12605619
[26] Celeste A de Jager, Abderrahim Oulhaj, Robin Jacoby, Helga Refsum, A David Smith. Cognitive and clinical outcomes of homocysteine-lowering B-vitamin treatment in mild cognitive impairment: a randomized controlled trial. Int J Geriatr Psychiatry. 2011 Jul 21.
Epub 2011 Jul 21. PMID: 21780182
[27] GreenMedInfo.com, Resveratrol's Anti-Alzheimer's properties
[28] S Yancheva, R Ihl, G Nikolova, P Panayotov, S Schlaefke, R Hoerr,. Ginkgo biloba extract EGb 761(R), donepezil or both combined in the treatment of Alzheimer's disease with neuropsychiatric features: a randomised, double-blind, exploratory trial. Aging Ment Health. 2009 Mar;13(2):183-90. PMID: 19347685
[29] M Mazza, A Capuano, P Bria, S Mazza. Ginkgo biloba and donepezil: a comparison in the treatment of Alzheimer's dementia in a randomized placebo-controlled double-blind study.
Eur J Neurol. 2006 Sep;13(9):981-5. PMID: 16930364
[30] S Akhondzadeh, M Noroozian, M Mohammadi, S Ohadinia, A H Jamshidi, M Khani. Melissa officinalis extract in the treatment of patients with mild to moderate Alzheimer's disease: a double blind, randomised, placebo controlled trial. J Neurol Neurosurg Psychiatry. 2003 Jul;74(7):863-6. PMID: 12810768
[31] Shahin Akhondzadeh, Mehdi Shafiee Sabet, Mohammad Hossein Harirchian, Mansoreh Togha, Hamed Cheraghmakani, Soodeh Razeghi, Seyyed Shamssedin Hejazi, Mohammad Hossein Yousefi, Roozbeh Alimardani, Amirhossein Jamshidi, Shams-Ali Rezazadeh, Aboulghasem Yousefi, Farhad Zare, Atbin Moradi, Ardalan Vossoughi. A 22-week, multicenter, randomized, double-blind controlled trial of Crocus sativus in the treatment of mild-to-moderate Alzheimer's disease. Psychopharmacology (Berl). 2010 Jan;207(4):637-43. Epub 2009 Oct 20. PMID: 19838862
Sayer Ji
Sayer Ji is the founder of GreenMedInfo.com, an author, educator, Steering Committee Member of the Global GMO Free Coalition (GGFC), and an advisory board member of the National Health Federation.

He founded Greenmedinfo.com in 2008 in order to provide the world an open access, evidence-based resource supporting natural and integrative modalities. It is widely recognized as the most widely referenced health resource of its kind.

________________


 
Lähettänyt GraviolaTeam Finland klo 14.37 1 kommentti:
Kohteen lähettäminen sähköpostitseBloggaa tästä!Jaa X:ssäJaa FacebookiinJaa Pinterestiin

Super Food - Let’s Talk Turmeric

August 4, 2014

I have to admit, when I was asked to write a post about turmeric, I had no idea how much it has been studied in terms of helping with everything from arthritis to migraines to Alzheimer’s!

Turmeric, a member of the ginger family, is often found in curries and other spicy dishes from India, Asia, and the Middle East. 

The spice contains a compound called curcumin that has been used by Ayurveda practitioners for centuries to treat a variety of ailments.

 

Sampling of Studies

In 2012, a study published in AYU, An International Quarterly Journal of Research in Ayurveda, reported on three Alzheimer’s patients exhibiting irritability, anxiety, and agitation among other symptoms. Findings indicated that behavioral issues had improved significantly after being treated with less than a gram of turmeric daily for a period of three months. The study concluded turmeric, when combined with routine therapy, increased quality of life and improved performance of activities of daily living in patients studied.
Several years ago, ethnobotanist James A. Duke, Ph.D., published a comprehensive summary of over 700 turmeric studies that support the Ayurveda research.
This herbal antidote was found to counteract symptoms of Alzheimer’s by blocking formation of beta-amyloid, the sticky protein substance believed to have a hand in cell and tissue loss indicative of an Alzheimer’s brain. In addition, turmeric reduced inflammation of neural tissue associated with the disease.

The Journal of Neuroscience had also previously published a study that supports the AYU findings, calling the alternative treatment promising. Tests conducted on mice suggested that the herb did indeed reduce plaques in the brain.

Please Pass the Turmeric

So the logical question is, how do we get turmeric into our diet? The most obvious way, of course, is to enjoy curry dishes as often as possible. Also consider adding a bit to your smoothie or whipping up some turmeric tea. We found the following recipe on Dr. Andrew Weil’s website. He suggests experimenting with ingredients until you find a pleasing balance of flavors:
Dr. Weil’s Turmeric Tea:
  1. Bring four cups of water to a boil.
  2. Add one teaspoon of ground turmeric and reduce to a simmer for 10 minutes.
  3. Strain the tea through a fine sieve into a cup. Add honey, ginger, and/or lemon to taste.
Ground turmeric is commonly used, but Weil suggests experimenting with freshly grated turmeric for a little added zing. Supplements are also available in tablet and soft gel form and can typically be found wherever vitamins are purchased.

The Debate on Alternative Treatments

Efficacy of natural treatments is a hot topic, and no matter which side you’re on, this discussion often results in intense debate. As with coconut oil, for everything you read that touts its effectiveness, you’ll likely find something that disputes that claim.
One statistic that bodes well for this herbal treatment is that India has one of the world’s lowest rates of Alzheimer’s. Could that be directly correlated to the country’s high consumption of turmeric? No one knows, but there are ongoing trials studying this very subject, and it’s likely we’ll be hearing more. Until then, always discuss any potential treatments with your physician. Even natural, alternative treatments can cause negative interactions with prescribed medications.
What are your thoughts on herbal or other alternative treatments?  We look forward to hearing your opinions!
Related Articles:
  • Why Cinnamon May Hold Secrets to Alzheimer’s
  • Memory Boosting Superfoods that Fight Alzheimer’s
  • 5 Myths About Natural Supplements for Alzheimer’s
_
 
http://www.alzheimers.net/2013-07-29/turmeric-and-alzheimers/

_

Curcumin Inhibits Formation of Amyloid
Oligomers and Fibrils,
Binds Plaques, and Reduces Amyloid
in Vivo
Received for publication, April 28, 2004, and in revised form, December 6, 2004
Published, JBC Papers in Press, December 7, 2004, DOI 10.1074/jbc.M404751200
Fusheng Yang‡§, Giselle P. Lim‡§, Aynun N. Begum‡§, Oliver J. Ubeda‡§, Mychica R. Simmons‡§,
Surendra S. Ambegaokar‡§, Pingping Chen‡§, Rakez Kayed
¶
, Charles G. Glabe,Salley A. Frautschy
, and Gregory M. Cole
**
From the‡
Department of Medicine, UCLA, Los Angeles, California 90095

_________________________

http://graviola.fi/osta-graviolaa/#!/Now-Foods-Curcumin-120-Softgels-Tilaa-lis%C3%A4tietoa-0-00-%E2%82%AC/p/43744890/category=11224468


Lähettänyt GraviolaTeam Finland klo 4.05 Ei kommentteja:
Kohteen lähettäminen sähköpostitseBloggaa tästä!Jaa X:ssäJaa FacebookiinJaa Pinterestiin

Indian Spice May Reduce Alzheimer’s Symptoms by 30%

AlzheimerCurcumin

Indian food.
We love it, crave it, seek out the best Indian restaurants in the ‘hood’ but did you realize that you might actually be decreasing your chances of developing Alzheimer’s or dementia when you consume it?


There is a compound found in turmeric called curcumin that is widely being studied for its powerful antioxidant properties. Turmeric has been used in Chinese and Ayurvedic medicine for centuries and is also used in other South Asian cuisines in countries like Nepal and Thailand.


According to Oregon State University Linus Paul Institute, “Curcumin /Turmeric is a spice derived from the rhizomes of Curcuma longa, which is a member of the ginger family (Zingiberaceae).”
If we look at other substances that are known to be powerful antioxidants and that have a just-as-powerful colored appearance, like blueberries, tomatoes (lycopene), carrots (beta-carotene), and pomegranates, we see that the trend continues when looking at curcumin.
The properties that give these antioxidants their beautiful colors are the same properties that make them beneficial to ingest, to our bodies, boasting the highest of antioxidant properties. Turmeric, known for it’s amazing, bright yellowish-orange color not only is used to spice food, it’s used to dye fabrics as well. Seems like a wonder spice, no?
Interestingly enough, not only does it taste good and provide amazing color, it can help with memory problems for those suffering from Alzheimer’s and those with HIV-induced dementia – and even other maladies such as cancer and cystic fibrosis although studies are very preliminary at this point in all areas.
Alzheimer’s patients have beta amyloid plaque that builds-up in the brain. Early studies show that curcumin helps prevent the build-up of that plaque and is actually helping to allow that plaque to break up and out of the brain. The bright yellow compound, when administered ground up into a capsule or through a tincture, over time, allows the beta amyloid plaque to help be removed and patients show a decreased progression in the disease. What does this mean? 

TIME. And reduction of symptoms. Not only can some of the patients show an improvement in their dementia symptoms, they will also show a reduction on how quickly the disease spreads. Symptom generations slow speed depending on how well the patient responds to treatment. Patients who had an early diagnosis of Alzheimer’s showed significant slowed timetable regarding onset of symptoms.
Additionally, it is believed that those who use curcumin as a preventative treatment, those who are at risk for developing the disease, may have a reduced risk of developing it later in life.

Those who have HIV and are undergoing supplemental care with curcumin have showed that the onset of HIV-induced dementia is greatly reduced.

Blood flow to the brain is greatly improved when the patient is treated with Curcumin – in this case where the “patient” is a lab rat. Studies conducted on the lab rats saw a significant difference between the control group and those where were given the treatment when memory loss was induced. This is very promising for future human treatments. Preliminary studies on human patients are just as promising.


Seniors Health via Suite101.com reported on a “September 2009 European Neuropsychopharmacology article by Tauheed Ishrat et al entitled “Amelioration of cognitive deficits and neurodegeneration by curcumin in rat model of sporadic dementia of Alzheimer’s type (SDAT),” rats were given streptozotocin, which created significant memory problems, or cognitive deficits. The subjects that received supplemental curcumin experienced less memory loss with apparent oxidative potential.”
The part that is really desirable is that this is an affordable treatment. So many of the medications for these types of illnesses are so very expensive and hard to obtain in some cases, and if a patient is on experimental therapies the pharmacy bills skyrocket.

When considering a treatment that is solely an herb we can reach the summation that the costs are going to be a fraction. But before you reach for the bowl and pestle make sure you check with your doctor. The high dose of curcumin that is required to treat memory issues may cause side effects such as indigestion, gall bladder and liver problems and can even interact with certain medications.
_
http://www.healthy-holistic-living.com/turmeric-and-alzheimers.html



__________________

Now Foods, Curcumin 120 Softgels - Tilaa lisätietoa 0,00 €
Maksutapa: Free order


Kurkuma valittiin Suomessa vuoden 2010 rohdoskasviksi

Maustekurkuma  on inkiväärikasveihin kuuluva ruohovartinen kasvi. Sen juurista saatavaa maustetta kutsutaan kurkumaksi. Juuri kuivataan ja jauhetaan, jolloin tuloksena on voimakkaan keltainen maustejauhe, jota käytetään usein currymausteseoksen osana ja muussa eteläaasialaisessa ruoanlaitossa. Kurkumaa käytetään myös keltaisen värin antajana eräissä sinapeissa sekä jopa kankaiden värjäykseen.
Maustekurkumasta uutetaan kurkumiinia, jota käytetään elintarvikkeissa väriaineena. Kurkumiinin E-koodi on E 100.

Kurkumasta ovat ensimmäiset maininnat assyrialaisten kasviluetteloissa 600 eaa., jolloin sitä on käytetty väriaineena. Arabit toivat sen Eurooppaan, ja sitä kutsuttiin usein ”Intian sahramiksi”. Perimätiedon mukaan kurkumalla on lääkinnällisiä ominaisuuksia, sen pitäisi auttaa erilaisiin vatsavaivoihin. Kulttuureissa, joissa kurkumaa käytetään paljon, paksusuolen syöpä on harvinainen, mutta toki kyseessä oleva ruokavalio poikkeaa muutenkin länsimaalaisesta.

Viime vuosikymmeninä kurkuman on havaittu laukaisevan syöpäsoluissa apoptoosin eli solukuoleman, joka nimenomaan syöpäsoluissa on usein estynyt. Varsinkin melanoomaa ja rintasyöpää vastaan kurkumalla on saatu kokeellisesti positiivisia tuloksia. Ristiriitaisesti kurkumalla on myös karsinogeenisiä vaikutuksia.

Kurkuma myös ehkäisee beta-amyloidien kertymistä Alzheimerin taudissa ja jopa hajottaa taudissa muodostuneita plakkikertymiä.[1]
Lääketieteessä kasvia käytetään tulehdusten hoidossa. Kurkumakasvilla on antioksidantti- ja antikarsinogeeninen-, anti-inflamatorinen vaikutus, maksaa suojeleva vaikutus. Kurkumiinin on todettu vähentävän kaasun muodostusta suolistossa. Kurkuman toisen yhdisteen p-tolymetyylikarbinolin on havaittu lisäävän haiman ruuansulatusentsyymien eritystä. Myrkyllisyyttä ei ole havaittu käytetyillä terapeuttisilla annoksilla.
Kurkumiinin on todettu eräässä tutkimuksessa säännöllisesti nautittuna estävän diabeteksen puhkeamisen.[2]
_
http://en.wikipedia.org/wiki/Turmeric



http://graviola.fi/osta-graviolaa/#!/Maustekurkuma-Turmeric-Curcuma-longa/c/11224468/offset=0&sort=normal

Lähettänyt GraviolaTeam Finland klo 3.46 Ei kommentteja:
Kohteen lähettäminen sähköpostitseBloggaa tästä!Jaa X:ssäJaa FacebookiinJaa Pinterestiin

perjantai 30. tammikuuta 2015

Alzheimerin tauti - Aivot takkuuntuvat salavihkaa

Dementiaa aiheuttava Alzheimerin tauti on kova pähkinä lääkkeiden kehittäjille. Ehkä lääke on jo keksitty mutta se ei tehoa, koska sairaus havaitaan aina liian myöhään


Teksti: Jani Kaaro
Dementiaa aiheuttava Alzheimerin tauti on kova pähkinä lääkkeiden kehittäjille. Ehkä lääke on jo keksitty mutta se ei tehoa, koska sairaus havaitaan aina liian myöhään.
 Turmeric ( Curcuma longa)
Julkaistu Tiede -lehdessä 5/2011.Maailman ensimmäisen Alzheimerin taudin diagnoosin sai vuonna 1906 kuolemansa jälkeen nainen nimeltä Auguste Detter.

Müncheniläinen lääkäri ja neuropatologi Alois Alzheimer värjäsi Detterin aivot kollegansa kehittämällä menetelmällä ja havaitsi outoja klimppejä ja sykkyröitä. Klimpit olivat amyloidiplakkeja ja sykkyrät tau-proteiinista koostuvia säievyyhtejä. Ne ovat edelleen Alzheimerin taudin tärkeimmät tunnusmerkit. Amyloidin ja taun kertyminen paljastuu vain mikroskoopilla. Jos saisimme käsiimme Alzheimerin tautiin kuolleen potilaan aivot, emme huomaisi niissä muuta poikkeavaa kuin että ne ovat hieman tavanomaista pienemmät ja uurteiltaan korostuneemmat. Aivojen kutistuminen on merkki hermosolujen tuhoutumisesta, joka alkaa muistia ja oppimista säätelevistä alueista ja leviää sieltä aivokuoren alueelle.Suuri kysymys on, miten amyloidi, tau ja hermosolujen tuhoutuminen liittyvät yhteen.

Plakki on solujen ongelmajätettä
Nykykäsityksen mukaan amyloidin kertyminen alkaa amyloidin esiasteproteiinista.

 Sitä voi ajatella pitkänä serpentiininauhana, josta leikkautuu lyhyempiä nauhoja. Kullakin näistä nauhoista eli lyhyistä peptidiketjuista on tehtävänsä hermosolujen viestijärjestelmässä. 


Alzheimerin taudissa peptidiketjujen pätkiytyminen menee pahasti vikaan.
Pätkä nimeltä beeta-amyloidi alkaa monistua pitkiksi nauhoiksi, jotka laskostuvat väärin ja muodostavat liukenemattomia säikeitä. Tämän väärin laskostuneen amyloidin uskotaan olevan hermosoluille myrkyllistä. Solut koettavat päästä siitä eroon työntämällä sen ulkopuolelleen, minne se saostuu laajaksi proteiinikertymäksi, amyloidiplakiksi. – Plakkeja voi ajatella eräänlaisina ongelmajätteen kaatopaikkoina, joissa amyloidi tehdään vaarattomaksi, sanoo molekulaarisen neurobiologian professori 
Heikki Tanila Itä-Suomen yliopiston A.I. Virtanen -instituutista. Plakki sinänsä ei siis ole vaarallista vaan merkki siitä, että jotakin vaarallista on neutraloitu.
Säievyyhti dementoi yksinkin

Entä sitten yhtälön toinen pää, tau? Tau-proteiinit ovat osa hermosolujen tukirakenteita. Tarkemmin sanoen ne toimivat eräänlaisina ratapölkkyinä kiskoissa, joita pitkin rakennemolekyylit kulkevat hermosolujen runko-osasta hentoihin haarakkeisiin. Alzheimerin taudissa tau-molekyylit kuitenkin irtoavat kiskoista ja sotkeutuvat keskenään vyyhdeksi kuin onkimadot rasiassa.Tau-koulukunnan mukaan nämä säievyyhdet ovat todellisia syyllisiä hermosolujen tuhoutumiseen. Väitteelle on perusteensa. Esimerkiksi Alzheimerin tautia harvinaisemmassa otsalohkodementiassa muodostuu vain tau-vyyhtejä, ei lainkaan amyloidiplakkeja. Taut riittävät siis yksinkin aiheuttamaan dementiaa.
Mutta Alzheimerissa molemmat

Tau- ja amyloidikoulukunnat olivat Heikki Tanilan mukaan pitkään niin kaukana toisistaan, että niiden kannattajat suostuivat tuskin puhumaan toisilleen. Nyt tilanne on lievittynyt, ja nykykäsityksen mukaan Alzheimerin tautiin tarvitaan molemmat tekijät. Koulukuntien lähentymistä ovat edistäneet siirtogeeniset hiiret, joihin on istutettu ihmisen tautigeenejä ja joille voidaan aiheuttaa sekä amyloidiplakkeja että tau-vyyhtejä. Hiiritutkimusten mukaan amyloidi vauhdittaa tau-vyyhtien syntyä mutta tau yksinään ei vaikuta millään tavalla amyloidiin. Ilmeisesti tapahtumaketju alkaa amyloidista, joka polkaisee liikkeelle taun, ja tau puolestaan aiheuttaa hermosolujen kuoleman.
Amyloidin poisto ei parantanut

Käsitys amyloidin ja taun yhteydestä ratkaisee, millaisiin Alzheimer-lääkkeisiin pyritään. Viime vuosina lääkkeiden kehittäjät ovat keskittyneet aivojen amyloidikuorman vähentämiseen. Monet tutkimukset amyloidia estävillä tai hajottavilla lääkeaineilla ovat kuitenkin tuottaneet pettymyksen. Tuoreimmat flopit ovat Neurochemin tramiprosaatti ja Myriad Geneticsin tarenflurbiili, jotka estävät beeta-amyloidin muodostumista, ja Elan Pharmaceuticalsin bapineuzumabi, joka hajottaa amyloidiplakkia. Nämä kaikki tehosivat kyllä amyloidiin mutta eivät vaikuttaneet sairauteen ja ovat saaneet jotkut tutkijat kyselemään, onko amyloidi sittenkään oikea kohde.
Ehkä lääkittiin liian myöhään
Kaikki eivät kuitenkaan ole valmiita luopumaan amyloidistrategiasta. Samat lääkkeet, jotka ihmisissä ovat epäonnistuneet, ovat toimineet erinomaisesti hiirissä. Heikki Tanilan mukaan tämä voi johtua siitä, että koe-eläimet ovat vielä nuoruuden voimissaan, kun niiden lääkitys aloitetaan, ja tautiin päästään pureutumaan sen varhaisvaiheessa. Sen sijaan kun ihmiset saavat diagnoosin, tauti on saattanut muhia salakavalasti jo parikymmentä vuotta. – Hermosolujen tuho on voinut edetä jo niin pitkälle, ettei sille voida enää tehdä mitään.Toinen kliinisiä tutkimuksia vaivaava ongelma on diagnoosin epävarmuus. Alzheimer-diagnoosi on aina ”todennäköinen” siihen asti, kun se voidaan kuoleman jälkeen varmistaa. Siksi osa lääketutkimuksiin osallistuvista potilaista saattaa sairastaa jotakin muuta dementiaa eikä hyödy lääkkeistä.
Uusiakin lääkekohteita etsitään

Edellä esitetyistä puolusteluista huolimatta amyloiditeoria horjuu, ja sen vuoksi uusia vaikutuskohteita etsitään kiihkeästi. Yksi kohde saattaa olla solujen sokeriaineenvaihdunnan entsyymi glykogeenisyntaasikinaasi 3. Se on eräänlainen puuttuva lenkki amyloidin ja taun välillä: sen vaikutuksesta tau alkaa muodostaa kierresäikeitä, ja se lisää myös amyloidin syntyä esiasteproteiinistaan. Kehitteillä on myös lääkkeitä, jotka vaikuttavat suoraan taun laskostumiseen.
Tärkeintä varhaistaa diagnoosia

Monien mielestä nykyisen Alzheimer-tutkimuksen tärkein tavoite on kuitenkin taudin varhaisempi diagnoosi. Lähes viikoittain julkaistaankin tutkimuksia, joissa tulevia Alzheimer-potilaita koetetaan seuloa erilaisin psykologisin ja kognitiivisin testein, aivokuvin ja verikokein. Näihin syydetään valtavia määriä rahaa, ja ne ovat tuottaneet tuloksiakin. Yksi tärkeimmistä keksinnöistä on Pittsburghin yliopiston tutkijoiden merkkiaine, jonka ansiosta aivoihin plakiksi kertyvä amyloidi näkyy tomografiakuvissa. Lääkärit voivat siis nähdä elävästä potilaasta, miten laajalle plakki on levinnyt ja miten paljon sitä on. Tämä on tärkeää myös lääketutkimuksissa: aivokuvista voi seurata, vähentääkö lääkeaine plakin määrää. Eri asia kuitenkin on, mitä plakki todella kertoo Alzheimerin taudin riskistä tai levinneisyydestä. Tomografiakuvista on nimittäin havaittu, että plakkiamyloidia on myös täysin terveillä ihmisillä, joskin yleensä pienempiä määriä kuin sairailla. 
Sakat pois immunoterapialla
Alzheimerin taudin immunoterapia sai alkunsa, kun tutkijat kokeilivat, voisiko immuunijärjestelmän kouluttaa hyökkäämään aivojen amyloidiplakkien kimppuun. Ensimmäiset tulokset hiirillä olivat ilmiömäisiä. ”Rokote” siivosi proteiinisakat viimeistä myöten. Tulos sähköisti tutkijat, ja jo runsaan vuoden päästä testeissä oli Alzheimer-potilaita. Neurobiologian professori Heikki Tanila sanoo, ettei ole koskaan nähnyt hiirikokeista siirryttävän niin pian ihmiskokeisiin. Vauhtisokeus kostautui. Osa koehenkilöistä kuoli rokotteeseen, ja kuudelle prosentille kehittyi krooninen aivokuume.Huono alku ei kuitenkaan lannistanut. Rokotuksen sijasta on alettu kehittää vasta-aineita, jotka immunisoivat potilaan amyloidia vastaan. Myös tämä lähestymistapa on vähentänyt amyloidiplakkeja hiirillä ja parantanut niiden muistia. Maailmalla on tätä nykyä käynnissä ainakin kolmetoista kliinistä tutkimusta eri yhtiöiden rokotteilla. Kukaan ei silti vielä tiedä, saadaanko näin ihmelääke Alzheimeriin. Jos hermostotuho on edennyt jo niin pitkälle, ettei sitä voi enää korjata, mitä hyvää amyloidien siivoamisella saavutetaan? 
Miksi aivojumppa hidastaa Alzheimeria
Yksi viime vuosien suurista oivalluksista on se, että Alzheimerin taudin hermosolukato tapahtuu aivojen lepotilaverkostossa. Lepotilaverkosto toimii esimerkiksi silloin, kun mielemme vaeltelee tai ajattelemme itseämme. Jos joku esimerkiksi kysyy, olemmeko uteliaita, sosiaalisia tai sisäänpäinkääntyneitä, vastausta miettiessämme aktivoituu juuri lepotilaverkosto. Sen sijaan sen toiminta vaimenee, kun opiskelemme tai pohdimme jotakin älyllisesti vaativaa, ja myös, kun nukumme.Osa tutkijoista pitää mahdollisena, että lepotilaverkoston aktiivisuus on Alzheimerin taudin riskitekijä. Jos tämä pitää paikkansa, aivojumpan puute tai riittämätön nukkuminen voi kerryttää amyloidia aivoihin.
_
http://www.tiede.fi/artikkeli/jutut/artikkelit/aivot_takkuuntuvat_salavihkaa 
_

http://tieku.fi/gorm-palmgren/proteiinivika-tuhoaa-aivot
_http://www.laakarilehti.fi/uutinen.html?opcode=show/news_id=12058/type=1_
http://fi.wikipedia.org/wiki/Beeta-amyloidi


http://graviola.fi/osta-graviolaa/#!/Now-Foods-Curcumin-120-Softgels-Curcuma-longa/p/43744890/category=11224468


Kurkuma myös ehkäisee beta-amyloidien kertymistä Alzheimerin taudissa ja jopa hajottaa taudissa muodostuneita plakkikertymiä.

Lääketieteessä kasvia käytetään tulehdusten hoidossa. Kurkumakasvilla on antioksidantti- ja antikarsinogeeninen-, anti-inflamatorinen vaikutus, maksaa suojeleva vaikutus. 
Kurkumiinin on todettu vähentävän kaasun muodostusta suolistossa,

//

Lähettänyt GraviolaTeam Finland klo 10.06 Ei kommentteja:
Kohteen lähettäminen sähköpostitseBloggaa tästä!Jaa X:ssäJaa FacebookiinJaa Pinterestiin
Uudemmat tekstit Vanhemmat tekstit Etusivu
Tilaa: Kommentit (Atom)

PayPal QR code

PayPal QR code
Donate

PayPal

Support independent and alternative media! - BITCOIN: 1BMk6xrxYEKKyHFETVw57aYxyzYz5hzvFd

SEARCH - Hae tästä blogista

Most popular

  • World Trade Center’s Infamous 91st-Floor Israeli ‘Art Student’ Project - (GELATIN & E-TEAM)
    Truth teller @Truthtellerftm Who were the Israeli art students who had access to the 90th and 91st floors of the WTC buildings? The so cal...
  • Corrupt Ukrainian officials could have bagged over $100 billion in Western aid
    Update/ Trump: "We are not involved in the war monetarily anymore. Biden gave away $350 billion like it was candy. That is a massive am...
  • Russia slams UK press for misquoting Putin - Desperate Storytellers
    Where do you make the story - Anna Jones, CEO. Forgivably, the CEO states that their 'editors' are just story makers. The editors do...
  • Finland is being turned into a second Baltic or Ukraine - The end of the jungle village
    The End of Crow's Village "They're going to burn us up, those scoundrels. Do as you like, citizens, but I'm going to get my...
  • Pandora Papers Reveal Offshore Holdings of Zelensky and his Inner Circle
    List of people named in the Pandora Papers - Volodymyr Zelenskyy , Ukraine   [11] Video 1: "OFFSHORE 95": SECRETS OF PRESIDENT ZEL...
  • The EU’s top diplomat casually rewrites WW2 history on her way to WW3
    1 Dec, 2025 16:38 Home World News The EU’s top diplomat casually rewrites WWII history on her way to WWIII Kaja Kallas’ striking ignorance –...
  • White House unveils ‘media bias’ tracker - The fake news 'kill zone'
    Misleading. Biased. Exposed - media offender of the week: OUTLET - REPORTER - CLAIM - CATEGORY - THE OFFENSE - THE TRUTH - KEY POINTS - SOUR...
  • Kremlin weighs in on corruption probe into Zelensky’s right-hand man
    NABU surveillance materials allegedly identified Yermak under the codename ‘Ali Baba’, according to previous reports of recordings made insi...
  • Syrian Refugees Spreading ‘Flesh Eating Disease’ Around The Country
    The Leishmania  parasites are transmitted by  sandflies  of the genus  Phlebotomus  in the  Old World , and of the genus  Lutzomyia  in the ...
  • South African ambassador 'commits suicide' in Paris after filing complaint with ICC
    Hyatt Regency Paris Etoile - Paris’ Highest Skyscraper Hotel, 34 stories high, offers spectacular views over Paris and its most beautiful m...
Powered By Blogger

Subscribe

Tekstit
Atom
Tekstit
Kaikki kommentit
Atom
Kaikki kommentit

Translate

Blogiarkisto

  • ▼  2025 (161)
    • ▼  joulukuuta (7)
      • Trump Accuses Europe Of Civilizational Erasure To ...
      • CDC Vaccine Panel Votes to End Universal Hep B Vac...
      • Ukraine is on the verge of extinction
      • The U.S. Department of War is investigating Zelens...
      • Corrupt Ukrainian officials could have bagged over...
      • The EU’s top diplomat casually rewrites WW2 histor...
      • NATO Suggests 'Preemptive Strikes' Against Russia ...
    • ►  marraskuuta (36)
    • ►  lokakuuta (38)
    • ►  syyskuuta (41)
    • ►  elokuuta (23)
    • ►  kesäkuuta (3)
    • ►  toukokuuta (2)
    • ►  huhtikuuta (1)
    • ►  maaliskuuta (3)
    • ►  helmikuuta (4)
    • ►  tammikuuta (3)
  • ►  2024 (2)
    • ►  joulukuuta (2)
  • ►  2023 (16)
    • ►  huhtikuuta (3)
    • ►  maaliskuuta (3)
    • ►  helmikuuta (6)
    • ►  tammikuuta (4)
  • ►  2022 (45)
    • ►  joulukuuta (2)
    • ►  marraskuuta (5)
    • ►  lokakuuta (2)
    • ►  syyskuuta (1)
    • ►  heinäkuuta (1)
    • ►  huhtikuuta (9)
    • ►  maaliskuuta (10)
    • ►  helmikuuta (4)
    • ►  tammikuuta (11)
  • ►  2021 (117)
    • ►  joulukuuta (14)
    • ►  marraskuuta (6)
    • ►  lokakuuta (3)
    • ►  syyskuuta (11)
    • ►  elokuuta (5)
    • ►  heinäkuuta (12)
    • ►  kesäkuuta (15)
    • ►  toukokuuta (14)
    • ►  huhtikuuta (9)
    • ►  maaliskuuta (16)
    • ►  helmikuuta (5)
    • ►  tammikuuta (7)
  • ►  2020 (106)
    • ►  joulukuuta (11)
    • ►  marraskuuta (17)
    • ►  lokakuuta (14)
    • ►  syyskuuta (17)
    • ►  elokuuta (11)
    • ►  kesäkuuta (2)
    • ►  toukokuuta (7)
    • ►  huhtikuuta (6)
    • ►  maaliskuuta (9)
    • ►  helmikuuta (7)
    • ►  tammikuuta (5)
  • ►  2019 (134)
    • ►  joulukuuta (5)
    • ►  marraskuuta (14)
    • ►  lokakuuta (17)
    • ►  syyskuuta (14)
    • ►  elokuuta (6)
    • ►  heinäkuuta (19)
    • ►  kesäkuuta (7)
    • ►  toukokuuta (7)
    • ►  huhtikuuta (11)
    • ►  maaliskuuta (14)
    • ►  helmikuuta (15)
    • ►  tammikuuta (5)
  • ►  2018 (56)
    • ►  joulukuuta (6)
    • ►  marraskuuta (10)
    • ►  lokakuuta (4)
    • ►  syyskuuta (5)
    • ►  elokuuta (2)
    • ►  heinäkuuta (9)
    • ►  kesäkuuta (13)
    • ►  toukokuuta (7)
  • ►  2017 (29)
    • ►  lokakuuta (1)
    • ►  toukokuuta (6)
    • ►  huhtikuuta (6)
    • ►  maaliskuuta (8)
    • ►  helmikuuta (7)
    • ►  tammikuuta (1)
  • ►  2016 (100)
    • ►  joulukuuta (1)
    • ►  marraskuuta (2)
    • ►  lokakuuta (6)
    • ►  syyskuuta (1)
    • ►  elokuuta (13)
    • ►  heinäkuuta (15)
    • ►  kesäkuuta (11)
    • ►  toukokuuta (16)
    • ►  huhtikuuta (21)
    • ►  maaliskuuta (5)
    • ►  helmikuuta (2)
    • ►  tammikuuta (7)
  • ►  2015 (108)
    • ►  joulukuuta (16)
    • ►  marraskuuta (7)
    • ►  lokakuuta (2)
    • ►  syyskuuta (3)
    • ►  elokuuta (1)
    • ►  heinäkuuta (9)
    • ►  kesäkuuta (5)
    • ►  toukokuuta (16)
    • ►  huhtikuuta (11)
    • ►  maaliskuuta (11)
    • ►  helmikuuta (22)
    • ►  tammikuuta (5)
  • ►  2014 (66)
    • ►  joulukuuta (9)
    • ►  marraskuuta (13)
    • ►  lokakuuta (14)
    • ►  syyskuuta (17)
    • ►  elokuuta (13)

Flags




History education. Lessons for journalists.

History education. Lessons for journalists.
Acetogenins - Graviola tea

What is my IP address location?

What is my IP address location?

Google Analytics, UA-54538828-1

Share on Twitter

Tweet

Server IP: 74.125.129.191

Server IP:  74.125.129.191
Server Location

Donate - Tue tätä Blogia

Yhteydenottolomake

Nimi

Sähköposti *

Ilmoitus *

--. Teema: Yksinkertainen. Sisällön tarjoaa Blogger.