This article references 222 other publications.
Airborne Transmission of COVID-19: Aerosol Dispersion, Lung Deposition, and Virus-Receptor Interactions
- Yi Y. Zuo* ,
- William E. Uspal* , and
- Tao Wei*
Abstract
Coronavirus disease 2019 (COVID-19), due to infection by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is now causing a global pandemic. Aerosol transmission of COVID-19, although plausible, has not been confirmed by the World Health Organization (WHO) as a general transmission route.
Considering the rapid spread of SARS-CoV-2, especially nosocomial outbreaks and other superspreading events, there is an urgent need to study the possibility of airborne transmission and its impact on the lung, the primary body organ attacked by the virus.
Here, we review the complete pathway of airborne transmission of SARS-CoV-2 from aerosol dispersion in air to subsequent biological uptake after inhalation.
In particular, we first review the aerodynamic and colloidal mechanisms by which aerosols disperse and transmit in air and deposit onto surfaces. We then review the fundamental mechanisms that govern regional deposition of micro- and nanoparticles in the lung. Focus is given to biophysical interactions between particles and the pulmonary surfactant film, the initial alveolar-capillary barrier and first-line host defense system against inhaled particles and pathogens.
Finally, we summarize the current understanding about the structural dynamics of the SARS-CoV-2 spike protein and its interactions with receptors at the atomistic and molecular scales, primarily as revealed by molecular dynamics simulations. This review provides urgent and multidisciplinary knowledge toward understanding the airborne transmission of SARS-CoV-2 and its health impact on the respiratory system.
Aerosol Dispersion and Deposition
Basic Considerations
Generation and Morphology of Infectious Aerosols
Dispersion of Bioaerosols in Air
Modeling of Aerosol Deposition onto Surfaces
Future Directions in Modeling Aerosol Dispersion and Deposition
Aerosol Deposition in the Lung
Regional Deposition in the Lung
Interaction with the Pulmonary Surfactant Film
Pulmonary Surfactant Biomolecular Corona
Future Directions in Understanding Aerosol Deposition in the Lung
Molecular Interactions of SARS-CoV-2 with the ACE2 Receptor
Modeling SARS-CoV-2 Spike Protein and Virion
SARS-CoV-2 and Its S Protein
Interactions between SARS-CoV-2 S Protein and the ACE2 Receptor
Future Directions in Molecular Dynamics Simulations of Virus–Receptor Interactions
Concluding Remarks
The authors declare no competing financial interest.
__
The authors declare no competing financial interest.
__
We thank Drs. Fred Possmayer and Neil Uspal for valuable discussion about our paper. This research was supported by the National Science Foundation (NSF) grant numbers CBET-1604119 and CBET-2011317 to Y.Y.Z., the American Chemical Society (ACS) Petroleum Research Fund grant number 60809-DNI9 to W.E.U., and NSF grant numbers CBET-1831559 and CBET-1943999 to T.W.
__
Vocabulary | |
COVID-19 | coronavirus disease 2019, is the disease that is causing a global pandemic |
SARS-CoV-2 | severe acute respiratory syndrome coronavirus 2, is the virus that causes COVID-19 |
ACE2 | angiotensin converting enzyme 2, is the human receptor responsible for SARS-CoV-2 entry into cells |
RBD | receptor binding domain, is a key part of the viral spike protein that allows it to dock to the receptor for cell entry |
PS | pulmonary surfactant, is a lipid–protein complex that is synthesized by the alveolar type II epithelial cells and is responsible for innate immunity and surface tension reduction in the lung |
MD | molecular dynamics, is a computer simulation method for studying the physical movements and interactions between atoms and molecules |
CFD | computational fluid dynamics, is a branch of fluid mechanics concerned with numerical methods for the solution of physical problems involving fluid flow |
__
This article references 222 other publications.
- 1Coronavirus Disease (COVID-19) Pandemic. https://www.who.int/emergencies/diseases/novel-coronavirus-2019 (accessed 2020-11-15).
- 2Millett, G. A.; Jones, A. T.; Benkeser, D.; Baral, S.; Mercer, L.; Beyrer, C.; Honermann, B.; Lankiewicz, E.; Mena, L.; Crowley, J. S.; Sherwood, J.; Sullivan, P. Assessing Differential Impacts of COVID-19 on Black Communities. Annals of Epidemiology 2020, 47, 37– 44, DOI: 10.1016/j.annepidem.2020.05.003
- 3Haynes, N.; Cooper, L. A.; Albert, M. A. At the Heart of the Matter: Unmasking and Addressing COVID-19’s Toll on Diverse Populations. Circulation 2020, 142 (2), 105– 107, DOI: 10.1161/CIRCULATIONAHA.120.048126
- 4O’Dowd, A. Guidance Needed for Singlehanded GPs to Deal with COVID-19 Pandemic. BMJ. 2020, 368, m1261, DOI: 10.1136/bmj.m1261
- 5Yancy, C. W. COVID-19 and African Americans. JAMA 2020, 323 (19), 1891– 1892, DOI: 10.1001/jama.2020.6548
- 6Kaholokula, J. K.; Samoa, R. A.; Miyamoto, R. E. S.; Palafox, N.; Daniels, S.-A. COVID-19 Special Column: COVID-19 Hits Native Hawaiian and Pacific Islander Communities the Hardest. Hawaii J Health Soc. Welf. 2020, 79 (5), 143– 146
- 7Webb Hooper, M.; Nápoles, A. M.; Pérez-Stable, E. J. COVID-19 and Racial/Ethnic Disparities. JAMA 2020, 323 (24), 2466– 2467, DOI: 10.1001/jama.2020.8598
- 8Belanger, M. J.; Hill, M. A.; Angelidi, A. M.; Dalamaga, M.; Sowers, J. R.; Mantzoros, C. S. COVID-19 and Disparities in Nutrition and Obesity. N. Engl. J. Med. 2020, 383 (11), e69 DOI: 10.1056/NEJMp2021264
- 9Li, Q.; Guan, X.; Wu, P.; Wang, X.; Zhou, L.; Tong, Y.; Ren, R.; Leung, K. S. M.; Lau, E. H. Y.; Wong, J. Y.; Xing, X.; Xiang, N.; Wu, Y.; Li, C.; Chen, Q.; Li, D.; Liu, T.; Zhao, J.; Liu, M.; Tu, W.Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus–Infected Pneumonia. N. Engl. J. Med. 2020, 382 (13), 1199– 1207, DOI: 10.1056/NEJMoa2001316
- 10Modes of Transmission of Virus Causing COVID-19: Implications for IPC Precaution Recommendations. https://www.who.int/news-room/commentaries/detail/modes-of-transmission-of-virus-causing-covid-19-implications-for-ipc-precaution-recommendations (accessed 2020-03-29).
- 11Goldman, E. Exaggerated Risk of Transmission of COVID-19 by Fomites. Lancet Infect. Dis. 2020, 20 (8), 892– 893, DOI: 10.1016/S1473-3099(20)30561-2
- 12Mondelli, M. U.; Colaneri, M.; Seminari, E. M.; Baldanti, F.; Bruno, R. Low risk of SARS-CoV-2 Transmission by Fomites in Real-Life Conditions. Lancet Infect. Dis. 2020, DOI: 10.1016/S1473-3099(20)30678-2
- 13How COVID-19 Spreads. https://www.cdc.gov/coronavirus/2019-ncov/prevent-getting-sick/how-covid-spreads.html (accessed 2020-10-28).
- 14Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19). https://www.who.int/docs/default-source/coronaviruse/who-china-joint-mission-on-covid-19-final-report.pdf) (accessed 2020-02-28).
- 15Tellier, R.; Li, Y.; Cowling, B. J.; Tang, J. W. Recognition of Aerosol Transmission of Infectious Agents: A Commentary. BMC Infect. Dis. 2019, 19 (1), 101, DOI: 10.1186/s12879-019-3707-y
- 16Poulain, S.; Bourouiba, L. Disease Transmission via Drops and Bubbles. Phys. Today 2019, 72 (5), 70– 71, DOI: 10.1063/PT.3.4211
- 17Morawska, L.; Tang, J. W.; Bahnfleth, W.; Bluyssen, P. M.; Boerstra, A.; Buonanno, G.; Cao, J.; Dancer, S.; Floto, A.; Franchimon, F.; Haworth, C.; Hogeling, J.; Isaxon, C.; Jimenez, J. L.; Kurnitski, J.; Li, Y.; Loomans, M.; Marks, G.; Marr, L. C.; Mazzarella, L.How can Airborne Transmission of COVID-19 Indoors be Minimised?. Environ. Int. 2020, 142, 105832, DOI: 10.1016/j.envint.2020.105832
- 18Buonanno, G.; Stabile, L.; Morawska, L. Estimation of Airborne Viral Emission: Quanta Emission Rate of SARS-CoV-2 for Infection Risk Assessment. Environ. Int. 2020, 141, 105794, DOI: 10.1016/j.envint.2020.105794
- 19Dancer, S. J.; Tang, J. W.; Marr, L. C.; Miller, S.; Morawska, L.; Jimenez, J. L. Putting a Balance on the Aerosolization Debate around SARS-CoV-2. Journal of Hospital Infection 2020, 105 (3), 569– 570, DOI: 10.1016/j.jhin.2020.05.014
- 20Morawska, L.; Cao, J. Airborne Transmission of SARS-CoV-2: The World Should Face the Reality. Environ. Int. 2020, 139, 105730, DOI: 10.1016/j.envint.2020.105730
- 21Kumar, P.; Morawska, L. Could Fighting Airborne Transmission Be the Next Line of Defence Against COVID-19 Spread?. City and Environment Interactions 2019, 4, 100033, DOI: 10.1016/j.cacint.2020.100033
- 22Prather, K. A.; Wang, C. C.; Schooley, R. T. Reducing Transmission of SARS-CoV-2. Science 2020, 368 (6498), 1422– 1424, DOI: 10.1126/science.abc6197
- 23Morawska, L.; Milton, D. K. It is Time to Address Airborne Transmission of COVID-19. Clin. Infect. Dis. 2020, 6, ciaa939, DOI: 10.1093/cid/ciaa939
- 24Fennelly, K. P. Particle Sizes of Infectious Aerosols: Implications for Infection Control. Lancet Respir. Med. 2020, 8 (9), 914– 924, DOI: 10.1016/S2213-2600(20)30323-4
- 25Bourouiba, L. Turbulent Gas Clouds and Respiratory Pathogen Emissions: Potential Implications for Reducing Transmission of COVID-19. JAMA 2020, 323 (18), 1837– 1838, DOI: 10.1001/jama.2020.4756
- 26Scheuch, G. Breathing Is Enough: For the Spread of Influenza Virus and SARS-CoV-2 by Breathing Only. J. Aerosol Med. Pulm. Drug Delivery 2020, 33 (4), 230– 234, DOI: 10.1089/jamp.2020.1616
- 27Ma, J.; Qi, X.; Chen, H.; Li, X.; Zhang, Z.; Wang, H.; Sun, L.; Zhang, L.; Guo, J.; Morawska, L.; Grinshpun, S. A.; Biswas, P.; Flagan, R. C.; Yao, M. Coronavirus Disease 2019 Patients in Earlier Stages Exhaled Millions of Severe Acute Respiratory Syndrome Coronavirus 2 per Hour. Clin. Infect. Dis. 2020, ciaa1283, DOI: 10.1093/cid/ciaa1283
- 28Bake, B.; Larsson, P.; Ljungkvist, G.; Ljungström, E.; Olin, A. C. Exhaled Particles and Small Airways. Respir. Res. 2019, 20 (1), 8, DOI: 10.1186/s12931-019-0970-9
- 29Xie, X.; Li, Y.; Chwang, A. T.; Ho, P. L.; Seto, W. H. How Far Droplets can Move in Indoor Environments--Revisiting the Wells Evaporation-Falling Curve. Indoor Air 2007, 17 (3), 211– 25, DOI: 10.1111/j.1600-0668.2007.00469.x
- 30Liang, D.; Shi, L.; Zhao, J.; Liu, P.; Schwartz, J.; Gao, S.; Sarnat, J. A.; Liu, Y.; Ebelt, S. T.; Scovronick, N. C.; Chang, H. Urban Air Pollution May Enhance COVID-19 Case-Fatality and Mortality Rates in the United States. Innovation 2020, 1, 100047, DOI: 10.1016/j.xinn.2020.100047
- 31Conticini, E.; Frediani, B.; Caro, D. Can Atmospheric Pollution Be Considered a Co-Factor in Extremely High Level of SARS-CoV-2 Lethality in Northern Italy?. Environ. Pollut. 2020, 261, 114465, DOI: 10.1016/j.envpol.2020.114465
- 32Wu, X.; Nethery, R. C.; Sabath, B. M.; Braun, D.; Dominici, F. Air Pollution and COVID-19 Mortality in the United States: Strengths and Limitations of an Ecological Regression Analysis. Sci. Adv. 2020, 6 (45), eabd4049 DOI: 10.1126/sciadv.abd4049
- 33Moriyama, M.; Hugentobler, W. J.; Iwasaki, A. Seasonality of Respiratory Viral Infections. Annu. Rev. Virol. 2020, 7 (1), 83– 101, DOI: 10.1146/annurev-virology-012420-022445
- 34Luo, W.; Majumder, M. S.; Liu, D.; Poirier, C.; Mandl, K. D.; Lipsitch, M.; Santillana, M. The Role of Absolute Humidity on Transmission Rates of the COVID-19 Outbreak. medRxiv, February 17, 2020, ver. 1.https://www.medrxiv.org/content/10.1101/2020.02.12.20022467v1 (accessed 2020-02-17).
- 35Javelle, E. Electronic Cigarette and Vaping Should Be Discouraged During the New Coronavirus SARS-CoV-2 Pandemic. Arch. Toxicol. 2020, 94 (6), 2261– 2262, DOI: 10.1007/s00204-020-02744-z
- 36McAlinden, K. D.; Eapen, M. S.; Lu, W.; Chia, C.; Haug, G.; Sohal, S. S. COVID-19 and Vaping: Risk for Increased Susceptibility to SARS-CoV-2 Infection?. Eur. Respir. J. 2020, 56, 2001645, DOI: 10.1183/13993003.01645-2020
- 37Consensus Document on the Epidemiology of Severe Acute Respiratory Syndrome (SARS). https://apps.who.int/iris/handle/10665/70863 (accessed 2020-11-15).
- 38Gormley, M.; Aspray, T. J.; Kelly, D. A. COVID-19: Mitigating Transmission via Wastewater Plumbing Systems.. Lancet. Global health 2020, 8 (5), e643 DOI: 10.1016/S2214-109X(20)30112-1
- 39Miller, S. L.; Nazaroff, W. W.; Jimenez, J. L.; Boerstra, A.; Buonanno, G.; Dancer, S. J.; Kurnitski, J.; Marr, L. C.; Morawska, L.; Noakes, C. Transmission of SARS-CoV-2 by Inhalation of Respiratory Aerosol in the Skagit Valley Chorale Superspreading Event. Indoor Air 2020, 00, 1– 10, DOI: 10.1111/ina.12751
- 40Lu, J.; Gu, J.; Li, K.; Xu, C.; Su, W.; Lai, Z.; Zhou, D.; Yu, C.; Xu, B.; Yang, Z. COVID-19 Outbreak Associated with Air Conditioning in Restaurant, Guangzhou, China, 2020. Emerging Infect. Dis. 2020, 26 (7), 1628– 1631, DOI: 10.3201/eid2607.200764
- 41Guo, Z.-D.; Wang, Z.-Y.; Zhang, S.-F.; Li, X.; Li, L.; Li, C.; Cui, Y.; Fu, R.-B.; Dong, Y.-Z.; Chi, X.-Y.; Zhang, M.-Y.; Liu, K.; Cao, C.; Liu, B.; Zhang, K.; Gao, Y.-W.; Lu, B.; Chen, W. Aerosol and Surface Distribution of Severe Acute Respiratory Syndrome Coronavirus 2 in Hospital Wards, Wuhan, China, 2020. Emerging Infect. Dis. 2020, 26 (7), 1583– 1591, DOI: 10.3201/eid2607.200885
- 42Liu, Y.; Ning, Z.; Chen, Y.; Guo, M.; Liu, Y.; Gali, N. K.; Sun, L.; Duan, Y.; Cai, J.; Westerdahl, D.; Liu, X.; Xu, K.; Ho, K.-f.; Kan, H.; Fu, Q.; Lan, K. Aerodynamic Analysis of SARS-CoV-2 in Two Wuhan Hospitals. Nature 2020, 582 (7813), 557– 560, DOI: 10.1038/s41586-020-2271-3
- 43van Doremalen, N.; Bushmaker, T.; Morris, D. H.; Holbrook, M. G.; Gamble, A.; Williamson, B. N.; Tamin, A.; Harcourt, J. L.; Thornburg, N. J.; Gerber, S. I.; Lloyd-Smith, J. O.; de Wit, E.; Munster, V. J. Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. N. Engl. J. Med. 2020, 382 (16), 1564– 1567, DOI: 10.1056/NEJMc2004973
- 44Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; Niu, P.; Zhan, F.; Ma, X.; Wang, D.; Xu, W.; Wu, G.; Gao, G. F.; Tan, W. A Novel Coronavirus from Patients with Pneumonia in China, 2019. N. Engl. J. Med. 2020, 382 (8), 727– 733, DOI: 10.1056/NEJMoa2001017
- 45Bar-On, Y. M.; Flamholz, A.; Phillips, R.; Milo, R. SARS-CoV-2 (COVID-19) by the Numbers. eLife 2020, 9, e57309 DOI: 10.7554/eLife.57309
- 46Zuo, Z.; Kuehn, T. H.; Bekele, A. Z.; Mor, S. K.; Verma, H.; Goyal, S. M.; Raynor, P. C.; Pui, D. Y. H. Survival of Airborne MS2 Bacteriophage Generated from Human Saliva, Artificial Saliva, and Cell Culture Medium. Appl. Environ. Microbiol. 2014, 80 (9), 2796– 2803, DOI: 10.1128/AEM.00056-14
- 47Couch, R. B.; Knight, V.; Douglas, R. G., Jr.; Black, S. H.; Hamory, B. H. The Minimal Infectious Dose of Adenovirus Type 4; the Case for Natural Transmission by Viral Aerosol. Trans Am. Clin. Climatol. Assoc. 1969, 80, 205– 211
- 48Poon, W. C. K.; Brown, A. T.; Direito, S. O. L.; Hodgson, D. J. M.; Le Nagard, L.; Lips, A.; MacPhee, C. E.; Marenduzzo, D.; Royer, J. R.; Silva, A. F.; Thijssen, J. H. J.; Titmuss, S. Soft Matter Science and the COVID-19 Pandemic. Soft Matter 2020, 16 (36), 8310– 8324, DOI: 10.1039/D0SM01223H
- 49Morawska, L.; Johnson, G. R.; Ristovski, Z. D.; Hargreaves, M.; Mengersen, K.; Corbett, S.; Chao, C. Y. H.; Li, Y.; Katoshevski, D. Size Distribution and Sites of Origin of Droplets Expelled from the Human Respiratory Tract During Expiratory Activities. J. Aerosol Sci. 2009, 40 (3), 256– 269, DOI: 10.1016/j.jaerosci.2008.11.002
- 50Yang, S.; Lee, G. W.M.; Chen, C.-M.; Wu, C.-C.; Yu, K.-P. The Size and Concentration of Droplets Generated by Coughing in Human Subjects. J. Aerosol Med. 2007, 20 (4), 484– 494, DOI: 10.1089/jam.2007.0610
- 51Balachandar, S.; Zaleski, S.; Soldati, A.; Ahmadi, G.; Bourouiba, L. Host-to-Host Airborne Transmission as a Multiphase Flow Problem for Science-Based Social Distance Guidelines. Int. J. Multiphase Flow 2020, 132, 103439, DOI: 10.1016/j.ijmultiphaseflow.2020.103439
- 52Netz, R. R. Mechanisms of Airborne Infection via Evaporating and Sedimenting Droplets Produced by Speaking. J. Phys. Chem. B 2020, 124 (33), 7093– 7101, DOI: 10.1021/acs.jpcb.0c05229
- 53Marr, L. C.; Tang, J. W.; Van Mullekom, J.; Lakdawala, S. S. Mechanistic Insights into the Effect of Humidity on Airborne Influenza Virus Survival, Transmission and Incidence. J. R. Soc. Interface 2019, 16 (150), 20180298, DOI: 10.1098/rsif.2018.0298
- 54Duguid, H. A.; Stampfer, J. F., Jr. The Evaporation Rates of Small, Freely Falling Water Drops. J. Atmos. Sci. 1971, 28 (7), 1233– 1243, DOI: 10.1175/1520-0469(1971)028<1233:TEROSF>2.0.CO;2
- 55Crespo, A.; LiÑAn, A. Unsteady Effects in Droplet Evaporation and Combustion. Combust. Sci. Technol. 1975, 11 (1–2), 9– 18, DOI: 10.1080/00102207508946679
- 56Kinzer, G. D.; Gunn, R. The Evaporation, Temperature and Thermal Relaxation-Time of Freely Falling Waterdrops. J. Meteorol. 1951, 8 (2), 71– 83, DOI: 10.1175/1520-0469(1951)008<0071:TETATR>2.0.CO;2
- 57Sazhin, S. S. Advanced Models of Fuel Droplet Heating and Evaporation. Prog. Energy Combust. Sci. 2006, 32 (2), 162– 214, DOI: 10.1016/j.pecs.2005.11.001
- 58Lupo, G.; Niazi Ardekani, M.; Brandt, L.; Duwig, C. An Immersed Boundary Method for Flows with Evaporating Droplets. Int. J. Heat Mass Transfer 2019, 143, 118563, DOI: 10.1016/j.ijheatmasstransfer.2019.118563
- 59Schlottke, J.; Weigand, B. Direct Numerical Simulation of Evaporating Droplets. J. Comput. Phys. 2008, 227 (10), 5215– 5237, DOI: 10.1016/j.jcp.2008.01.042
- 60Newbold, F. R.; Amundson, N. R. A Model for Evaporation of a Multicomponent Droplet. AIChE J. 1973, 19 (1), 22– 30, DOI: 10.1002/aic.690190105
- 61Michaelides, E. E. Hydrodynamic Force and Heat/Mass Transfer from Particles, Bubbles, and Drops—The Freeman Scholar Lecture. J. Fluids Eng. 2003, 125 (2), 209– 238, DOI: 10.1115/1.1537258
- 62Netz, R. R.; Eaton, W. A. Physics of Virus Transmission by Speaking Droplets. Proc. Natl. Acad. Sci. U. S. A. 2020, 117 (41), 25209– 25211, DOI: 10.1073/pnas.2011889117
- 63Verreault, D.; Moineau, S.; Duchaine, C. Methods for Sampling of Airborne Viruses. Microbiol. Mol. Biol. Rev. 2008, 72 (3), 413– 444, DOI: 10.1128/MMBR.00002-08
- 64Duguid, J. P. The Size and the Duration of Air-Carriage of Respiratory Droplets and Droplet-Nuclei. Epidemiol. Infect. 1946, 44 (6), 471– 479, DOI: 10.1017/S0022172400019288
- 65Vejerano, E. P.; Marr, L. C. Physico-Chemical Characteristics of Evaporating Respiratory Fluid Droplets. J. R. Soc. Interface 2018, 15 (139), 20170939, DOI: 10.1098/rsif.2017.0939
- 66Fedorenko, A.; Grinberg, M.; Orevi, T.; Kashtan, N. Virus Survival in Evaporated Saliva Microdroplets Deposited on Inanimate Surfaces. bioRxiv, June 16, 2020, ver. 1.https://www.biorxiv.org/content/10.1101/2020.06.15.152983v1 (accessed 2020-11-10).
- 67Vonnemann, J.; Sieben, C.; Wolff, C.; Ludwig, K.; Böttcher, C.; Herrmann, A.; Haag, R. Virus Inhibition Induced by Polyvalent Nanoparticles of Different Sizes. Nanoscale 2014, 6 (4), 2353– 2360, DOI: 10.1039/c3nr04449a
- 68Arakelyan, A.; Fitzgerald, W.; Margolis, L.; Grivel, J.-C. Nanoparticle-Based Flow Virometry for the Analysis of Individual Virions. J. Clin. Invest. 2013, 123 (9), 3716– 3727, DOI: 10.1172/JCI67042
- 69Leung, W. W.-F.; Sun, Q. Charged PVDF Multilayer Nanofiber Filter in Filtering Simulated Airborne Novel Coronavirus (COVID-19) Using Ambient Nano-Aerosols. Sep. Purif. Technol. 2020, 245, 116887– 116887, DOI: 10.1016/j.seppur.2020.116887
- 70Weissman, D. N.; de Perio, M. A.; Radonovich, L. J., Jr COVID-19 and Risks Posed to Personnel During Endotracheal Intubation. JAMA 2020, 323 (20), 2027– 2028, DOI: 10.1001/jama.2020.6627
- 71Barker, J.; Jones, M. V. The Potential Spread of Infection Caused by Aerosol Contamination of Surfaces after Flushing a Domestic Toilet. J. Appl. Microbiol. 2005, 99 (2), 339– 347, DOI: 10.1111/j.1365-2672.2005.02610.x
- 72Liu, X.; Zhai, Z. Identification of Appropriate CFD Models for Simulating Aerosol Particle and Droplet Indoor Transport. Indoor Built Environ. 2007, 16 (4), 322– 330, DOI: 10.1177/1420326X06079890
- 73Blocken, B. LES over RANS in Building Simulation for Outdoor and Indoor Applications: A Fregone Conclusion?. Building Simulation 2018, 11 (5), 821– 870, DOI: 10.1007/s12273-018-0459-3
- 74Buchanan, C. R.; Dunn-Rankin, D. Transport of Surgically Produced Aerosols in an Operating Room. Am. Ind. Hyg. Assoc. J. 1998, 59 (6), 393– 402, DOI: 10.1080/15428119891010659
- 75Li, Y.; Huang, X.; Yu, I. T. S.; Wong, T. W.; Qian, H. Role of Air Distribution in SARS Transmission during the Largest Nosocomial Outbreak in Hong Kong. Indoor Air 2005, 15 (2), 83– 95, DOI: 10.1111/j.1600-0668.2004.00317.x
- 76Vilela, R. D.; Motter, A. E. Can Aerosols Be Trapped in Open Flows?. Phys. Rev. Lett. 2007, 99 (26), 264101, DOI: 10.1103/PhysRevLett.99.264101
- 77Sun, W.; Ji, J. Transport of Droplets Expelled by Coughing in Ventilated Rooms. Indoor Built Environ. 2007, 16 (6), 493– 504, DOI: 10.1177/1420326X07084290
- 78Schmidt, L.; Fouxon, I.; Krug, D.; van Reeuwijk, M.; Holzner, M. Clustering of Particles in Turbulence Due to Phoresis. Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 2016, 93 (6), 063110, DOI: 10.1103/PhysRevE.93.063110
- 79Shukla, V.; Volk, R.; Bourgoin, M.; Pumir, A. Phoresis in Turbulent Flows. New J. Phys. 2017, 19 (12), 123030, DOI: 10.1088/1367-2630/aa99bd
- 80Voth, G. A.; Soldati, A. Anisotropic Particles in Turbulence. Annu. Rev. Fluid Mech. 2017, 49 (1), 249– 276, DOI: 10.1146/annurev-fluid-010816-060135
- 81Ounis, H.; Ahmadi, G. A Comparison of Brownian and Turbulent Diffusion. Aerosol Sci. Technol. 1990, 13 (1), 47– 53, DOI: 10.1080/02786829008959423
- 82Bourouiba, L.; Dehandschoewercker, E.; Bush, J. W. M. Violent Expiratory Events: on Coughing and Sneezing. J. Fluid Mech. 2014, 745, 537– 563, DOI: 10.1017/jfm.2014.88
- 83Chen, C.; Lin, C.-H.; Jiang, Z.; Chen, Q. Simplified Models for Exhaled Airflow from a Cough with the Mouth Covered. Indoor air 2014, 24 (6), 580– 591, DOI: 10.1111/ina.12109
- 84Noti, J. D.; Blachere, F. M.; McMillen, C. M.; Lindsley, W. G.; Kashon, M. L.; Slaughter, D. R.; Beezhold, D. H. High Humidity Leads to Loss of Infectious Influenza Virus from Simulated Coughs. PLoS One 2013, 8 (2), e57485 DOI: 10.1371/journal.pone.0057485
- 85Redrow, J.; Mao, S.; Celik, I.; Posada, J. A.; Feng, Z.-g. Modeling the Evaporation and Dispersion of Airborne Sputum Droplets Expelled from a Human Cough. Building and Environment 2011, 46 (10), 2042– 2051, DOI: 10.1016/j.buildenv.2011.04.011
- 86Pendar, M.-R.; Páscoa, J. C. Numerical Modeling of the Distribution of Virus Carrying Saliva Droplets during Sneeze and Cough. Phys. Fluids 2020, 32 (8), 083305, DOI: 10.1063/5.0018432
- 87Ounis, H.; Ahmadi, G.; McLaughlin, J. B. Brownian Diffusion of Submicrometer Particles in the Viscous Sublayer. J. Colloid Interface Sci. 1991, 143 (1), 266– 277, DOI: 10.1016/0021-9797(91)90458-K
- 88Brooke, J. W.; Kontomaris, K.; Hanratty, T. J.; McLaughlin, J. B. Turbulent Deposition and Trapping of Aerosols at a Wall. Phys. Fluids A 1992, 4 (4), 825– 834, DOI: 10.1063/1.858299
- 89Goldman, A. J.; Cox, R. G.; Brenner, H. Slow Viscous Motion of a Sphere Parallel to a Plane Wall - I Motion through a Quiescent Fluid. Chem. Eng. Sci. 1967, 22 (4), 637– 651, DOI: 10.1016/0009-2509(67)80047-2
- 90Fan, F.-G.; Ahmadi, G. Wall Deposition of Small Ellipsoids from Turbulent Air Flows - A Brownian Dynamics Simulation. J. Aerosol Sci. 2000, 31 (10), 1205– 1229, DOI: 10.1016/S0021-8502(00)00018-5
- 91Zhang, H.; Ahmadi, G. Aerosol Particle Transport and Deposition in Vertical and Horizontal Turbulent Duct Flows. J. Fluid Mech. 2000, 406, 55– 80, DOI: 10.1017/S0022112099007284
- 92He, C.; Ahmadi, G. Particle Deposition with Thermophoresis in Laminar and Turbulent Duct Flows. Aerosol Sci. Technol. 1998, 29 (6), 525– 546, DOI: 10.1080/02786829808965588
- 93Soldati, A.; Marchioli, C. Physics and Modelling of Turbulent Particle Deposition and Entrainment: Review of a Systematic Study. Int. J. Multiphase Flow 2009, 35 (9), 827– 839, DOI: 10.1016/j.ijmultiphaseflow.2009.02.016
- 94Haber, S.; Butler, J. P.; Brenner, H.; Emanuel, I.; Tsuda, A. Shear Flow over a Self-Similar Expanding Pulmonary Alveolus during Rhythmical Breathing. J. Fluid Mech. 2000, 405, 243– 268, DOI: 10.1017/S0022112099007375
- 95Haber, S.; Yitzhak, D.; Tsuda, A. Gravitational Deposition in a Rhythmically Expanding and Contracting Alveolus. J. Appl. Physiol. 2003, 95 (2), 657– 671, DOI: 10.1152/japplphysiol.00770.2002
- 96Haber, S.; Yitzhak, D.; Tsuda, A. Trajectories and Deposition Sites of Spherical Particles Moving Inside Rhythmically Expanding Alveoli under Gravity-Free Conditions. J. Aerosol Med. Pulm. Drug Delivery 2010, 23 (6), 405– 413, DOI: 10.1089/jamp.2009.0774
- 97Balásházy, I.; Hofmann, W.; Farkas, Á.; Madas, B. G. Three-Dimensional Model for Aerosol Transport and Deposition in Expanding and Contracting Alveoli. Inhalation Toxicol. 2008, 20 (6), 611– 621, DOI: 10.1080/08958370801915291
- 98Henry, F. S.; Laine-Pearson, F. E.; Tsuda, A. Hamiltonian Chaos in a Model Alveolus. J. Biomech. Eng. 2009, 131 (1), 011006, DOI: 10.1115/1.2953559
- 99Darquenne, C.; Paiva, M. Two- and Three-Dimensional Simulations of Aerosol Transport and Deposition in Alveolar Zone of Human Lung. J. Appl. Physiol. 1996, 80 (4), 1401– 1414, DOI: 10.1152/jappl.1996.80.4.1401
- 100Ma, B.; Ruwet, V.; Corieri, P.; Theunissen, R.; Riethmuller, M.; Darquenne, C. CFD Simulation and Experimental Validation of Fluid Flow and Particle Transport in a Model of Alveolated Airways. J. Aerosol Sci. 2009, 40 (5), 403– 414, DOI: 10.1016/j.jaerosci.2009.01.002
- 101Darquenne, C. Aerosol Deposition in Health and Disease. J. Aerosol Med. Pulm. Drug Delivery 2012, 25 (3), 140– 147, DOI: 10.1089/jamp.2011.0916
- 102Sznitman, J. Respiratory Microflows in the Pulmonary Acinus. J. Biomech. 2013, 46 (2), 284– 298, DOI: 10.1016/j.jbiomech.2012.10.028
- 103Longest, P. W.; Holbrook, L. T. In Silico Models of Aerosol Delivery to the Respiratory Tract - Development and Applications. Adv. Drug Delivery Rev. 2012, 64 (4), 296– 311, DOI: 10.1016/j.addr.2011.05.009
- 104Pozrikidis, C. Interfacial Dynamics for Stokes Flow. J. Comput. Phys. 2001, 169 (2), 250– 301, DOI: 10.1006/jcph.2000.6582
- 105Gubbiotti, A.; Chinappi, M.; Casciola, C. M. Confinement Effects on the Dynamics of a Rigid Particle in a Nanochannel. Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 2019, 100 (5), 053307, DOI: 10.1103/PhysRevE.100.053307
- 106Ladd, A. J. C.; Verberg, R. Lattice-Boltzmann Simulations of Particle-Fluid Suspensions. J. Stat. Phys. 2001, 104 (5), 1191– 1251, DOI: 10.1023/A:1010414013942
- 107Aidun, C. K.; Clausen, J. R. Lattice-Boltzmann Method for Complex Flows. Annu. Rev. Fluid Mech. 2010, 42 (1), 439– 472, DOI: 10.1146/annurev-fluid-121108-145519
- 108Li, Z.; Kleinstreuer, C. Airflow Analysis in the Alveolar Region Using the Lattice-Boltzmann Method. Med. Biol. Eng. Comput. 2011, 49 (4), 441– 451, DOI: 10.1007/s11517-011-0743-1
- 109Teike, G.; Dietzel, M.; Michaelis, B.; Schomburg, H.; Sommerfeld, M. Multiscale Lattice–Boltzmann Approach for Electrophoretic Particle Deposition. Aerosol Sci. Technol. 2012, 46 (4), 451– 464, DOI: 10.1080/02786826.2011.634451
- 110Wang, H.; Zhao, H.; Wang, K.; He, Y.; Zheng, C. Simulation of Filtration Process for Multi-Fiber Filter Using the Lattice-Boltzmann Two-Phase Flow Model. J. Aerosol Sci. 2013, 66, 164– 178, DOI: 10.1016/j.jaerosci.2013.08.016
- 111Heyder, J. Deposition of Inhaled Particles in the Human Respiratory Tract and Consequences for Regional Targeting in Respiratory Drug Delivery. Proc. Am. Thorac. Soc. 2004, 1 (4), 315– 20, DOI: 10.1513/pats.200409-046TA
- 112Carvalho, T. C.; Peters, J. I.; Williams, R. O. Influence of Particle Size on Regional Lung Deposition – What Evidence is There?. Int. J. Pharm. 2011, 406 (1), 1– 10, DOI: 10.1016/j.ijpharm.2010.12.040
- 113Hinds, W. C. Aerosol Technology: Properties, Behavior, and Measurement of Airborne Particles; Wiley: Hoboken, NJ, 1999.
- 114Garcia-Mouton, C.; Hidalgo, A.; Cruz, A.; Pérez-Gil, J. The Lord of the Lungs: The Essential Role of Pulmonary Surfactant upon Inhalation of Nanoparticles. Eur. J. Pharm. Biopharm. 2019, 144, 230– 243, DOI: 10.1016/j.ejpb.2019.09.020
- 115Ochs, M.; Nyengaard, J. R.; Jung, A.; Knudsen, L.; Voigt, M.; Wahlers, T.; Richter, J.; Gundersen, H. J. G. The Number of Alveoli in the Human Lung. Am. J. Respir. Crit. Care Med. 2004, 169 (1), 120– 124, DOI: 10.1164/rccm.200308-1107OC
- 116Mutuku, J. K.; Hou, W. C.; Chen, W. H. An Overview of Experiments and Numerical Simulations on Airflow and Aerosols Deposition in Human Airways and the Role of Bioaerosol Motion in COVID-19 Transmission. Aerosol Air Qual. Res. 2020, 20, 1172– 1196, DOI: 10.4209/aaqr.2020.04.0185
- 117Fernández Tena, A.; Casan Clarà, P. Deposition of Inhaled Particles in the Lungs. Archivos de Bronconeumologia 2012, 48 (7), 240– 246, DOI: 10.1016/j.arbres.2012.02.003
- 118Fahy, J. V.; Dickey, B. F. Airway Mucus Function and Dysfunction. N. Engl. J. Med. 2010, 363 (23), 2233– 47, DOI: 10.1056/NEJMra0910061
- 119Button, B.; Cai, L. H.; Ehre, C.; Kesimer, M.; Hill, D. B.; Sheehan, J. K.; Boucher, R. C.; Rubinstein, M. A Periciliary Brush Promotes the Lung Health by Separating the Mucus Layer from Airway Epithelia. Science 2012, 337 (6097), 937– 41, DOI: 10.1126/science.1223012
- 120Stetten, A. Z.; Iasella, S. V.; Corcoran, T. E.; Garoff, S.; Przybycien, T. M.; Tilton, R. D. Surfactant-Induced Marangoni Transport of Lipids and Therapeutics within the Lung. Curr. Opin. Colloid Interface Sci. 2018, 36, 58– 69, DOI: 10.1016/j.cocis.2018.01.001
- 121Geiser, M.; Kreyling, W. G. Deposition and Biokinetics of Inhaled Nanoparticles. Part. Fibre Toxicol. 2010, 7 (1), 2, DOI: 10.1186/1743-8977-7-2
- 122Ruge, C. A.; Kirch, J.; Lehr, C. M. Pulmonary Drug Delivery: From Generating Aerosols to Overcoming Biological Barriers - Therapeutic Possibilities and Technological Challenges. Lancet Respir. Med. 2013, 1 (5), 402– 13, DOI: 10.1016/S2213-2600(13)70072-9
- 123Ruge, C. A.; Schaefer, U. F.; Herrmann, J.; Kirch, J.; Cañadas, O.; Echaide, M.; Pérez-Gil, J.; Casals, C.; Müller, R.; Lehr, C. M. The Interplay of Lung Surfactant Proteins and Lipids Assimilates the Macrophage Clearance of Nanoparticles. PLoS One 2012, 7 (7), e40775 DOI: 10.1371/journal.pone.0040775
- 124Ruge, C. A.; Kirch, J.; Cañadas, O.; Schneider, M.; Perez-Gil, J.; Schaefer, U. F.; Casals, C.; Lehr, C. M. Uptake of Nanoparticles by Alveolar Macrophages is Triggered by Surfactant Protein A. Nanomedicine 2011, 7 (6), 690– 3, DOI: 10.1016/j.nano.2011.07.009
- 125Geiser, M. Update on Macrophage Clearance of Inhaled Micro- and Nanoparticles. J. Aerosol Med. Pulm. Drug Delivery 2010, 23 (4), 207– 17, DOI: 10.1089/jamp.2009.0797
- 126Sungnak, W.; Huang, N.; Bécavin, C.; Berg, M.; Queen, R.; Litvinukova, M.; Talavera-López, C.; Maatz, H.; Reichart, D.; Sampaziotis, F.; Worlock, K. B.; Yoshida, M.; Barnes, J. L.; Banovich, N. E.; Barbry, P.; Brazma, A.; Collin, J.; Desai, T. J.; Duong, T. E.; Eickelberg, O.SARS-CoV-2 Entry Factors are Highly Expressed in Nasal Epithelial Cells Together with Innate Immune Genes. Nat. Med. 2020, 26 (5), 681– 687, DOI: 10.1038/s41591-020-0868-6
- 127Wilson, N. M.; Norton, A.; Young, F. P.; Collins, D. W. Airborne Transmission of Severe Acute Respiratory Syndrome Coronavirus-2 to Healthcare Workers: A Narrative Review. Anaesthesia 2020, 75 (8), 1086– 1095, DOI: 10.1111/anae.15093
- 128Mason, R. J. Thoughts on the Alveolar Phase of COVID-19. Am. J. Physiol Lung Cell Mol. Physiol 2020, 319 (1), L115– L120, DOI: 10.1152/ajplung.00126.2020
- 129Mason, R. J. Pathogenesis of COVID-19 from a Cell Biology Perspective. Eur. Respir. J. 2020, 55 (4), 2000607, DOI: 10.1183/13993003.00607-2020
- 130Zhou, F.; Yu, T.; Du, R.; Fan, G.; Liu, Y.; Liu, Z.; Xiang, J.; Wang, Y.; Song, B.; Gu, X.; Guan, L.; Wei, Y.; Li, H.; Wu, X.; Xu, J.; Tu, S.; Zhang, Y.; Chen, H.; Cao, B. Clinical Course and Risk Factors for Mortality of Adult Inpatients with COVID-19 in Wuhan, China: A Retrospective Cohort Study. Lancet 2020, 395 (10229), 1054– 1062, DOI: 10.1016/S0140-6736(20)30566-3
- 131Machhi, J.; Herskovitz, J.; Senan, A. M.; Dutta, D.; Nath, B.; Oleynikov, M. D.; Blomberg, W. R.; Meigs, D. D.; Hasan, M.; Patel, M.; Kline, P.; Chang, R. C.; Chang, L.; Gendelman, H. E.; Kevadiya, B. D. The Natural History, Pathobiology, and Clinical Manifestations of SARS-CoV-2 Infections. Journal of Neuroimmune Pharmacology 2020, 15 (3), 359– 386, DOI: 10.1007/s11481-020-09944-5
- 132Fan, E.; Beitler, J. R.; Brochard, L.; Calfee, C. S.; Ferguson, N. D.; Slutsky, A. S.; Brodie, D. COVID-19-Associated Acute Respiratory Distress Syndrome: Is a Different Approach to Management Warranted?. Lancet Respir. Med. 2020, 8 (8), 816– 821, DOI: 10.1016/S2213-2600(20)30304-0
- 133Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrler, T.; Erichsen, S.; Schiergens, T. S.; Herrler, G.; Wu, N.-H.; Nitsche, A.; Müller, M. A.; Drosten, C.; Pöhlmann, S. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell 2020, 181 (2), 271– 280, DOI: 10.1016/j.cell.2020.02.052
- 134Hou, Y. J.; Okuda, K.; Edwards, C. E.; Martinez, D. R.; Asakura, T.; Dinnon, K. H.; Kato, T.; Lee, R. E.; Yount, B. L.; Mascenik, T. M.; Chen, G.; Olivier, K. N.; Ghio, A.; Tse, L. V.; Leist, S. R.; Gralinski, L. E.; Schäfer, A.; Dang, H.; Gilmore, R.; Nakano, S.SARS-CoV-2 Reverse Genetics Reveals a Variable Infection Gradient in the Respiratory Tract. Cell 2020, 182 (2), 429– 446, DOI: 10.1016/j.cell.2020.05.042
- 135Zuo, Y. Y.; Veldhuizen, R. A.; Neumann, A. W.; Petersen, N. O.; Possmayer, F. Current Perspectives in Pulmonary Surfactant - Inhibition, Enhancement and Evaluation. Biochim. Biophys. Acta, Biomembr. 2008, 1778 (10), 1947– 77, DOI: 10.1016/j.bbamem.2008.03.021
- 136Zhang, H.; Fan, Q.; Wang, Y. E.; Neal, C. R.; Zuo, Y. Y. Comparative Study of Clinical Pulmonary Surfactants using Atomic Force Microscopy. Biochim. Biophys. Acta, Biomembr. 2011, 1808 (7), 1832– 42, DOI: 10.1016/j.bbamem.2011.03.006
- 137Zhang, H.; Wang, Y. E.; Fan, Q.; Zuo, Y. Y. On the Low Surface Tension of Lung Surfactant. Langmuir 2011, 27 (13), 8351– 8, DOI: 10.1021/la201482n
- 138Autilio, C.; Perez-Gil, J. Understanding the Principle Biophysics Concepts of Pulmonary Surfactant in Health and Disease. Arch. Dis. Child. Fetal Neonatal Ed. 2018, 104 (4), F443– F451, DOI: 10.1136/archdischild-2018-315413
- 139Guagliardo, R.; Perez-Gil, J.; De Smedt, S.; Raemdonck, K. Pulmonary Surfactant and Drug Delivery: Focusing on the Role of Surfactant Proteins. J. Controlled Release 2018, 291, 116– 126, DOI: 10.1016/j.jconrel.2018.10.012
- 140Cañadas, O.; Olmeda, B.; Alonso, A.; Pérez-Gil, J. Lipid-Protein and Protein-Protein Interactions in the Pulmonary Surfactant System and Their Role in Lung Homeostasis. Int. J. Mol. Sci. 2020, 21 (10), 3708, DOI: 10.3390/ijms21103708
- 141Tsuda, A.; Gehr, P. Nanoparticles in the Lung: Environmental Exposure and Drug Delivery; CRC Press: Boca Raton, FL, 2015.
- 142Hidalgo, A.; Cruz, A.; Pérez-Gil, J. Pulmonary Surfactant and Nanocarriers: Toxicity versus Combined Nanomedical Applications. Biochim. Biophys. Acta, Biomembr. 2017, 1859 (9), 1740– 1748, DOI: 10.1016/j.bbamem.2017.04.019
- 143Leth-Larsen, R.; Zhong, F.; Chow, V. T.; Holmskov, U.; Lu, J. The SARS coronavirus Spike Glycoprotein Is Selectively Recognized by Lung Surfactant Protein D and Activates Macrophages. Immunobiology 2007, 212 (3), 201– 11, DOI: 10.1016/j.imbio.2006.12.001
- 144Fan, Q.; Wang, Y. E.; Zhao, X.; Loo, J. S.; Zuo, Y. Y. Adverse Biophysical Effects of Hydroxyapatite Nanoparticles on Natural Pulmonary Surfactant. ACS Nano 2011, 5 (8), 6410– 6, DOI: 10.1021/nn2015997
- 145Hu, G.; Jiao, B.; Shi, X.; Valle, R. P.; Fan, Q.; Zuo, Y. Y. Physicochemical Properties of Nanoparticles Regulate Translocation across Pulmonary Surfactant Monolayer and Formation of Lipoprotein Corona. ACS Nano 2013, 7 (12), 10525– 33, DOI: 10.1021/nn4054683
- 146Valle, R. P.; Wu, T.; Zuo, Y. Y. Biophysical Influence of Airborne Carbon Nanomaterials on Natural Pulmonary Surfactant. ACS Nano 2015, 9 (5), 5413– 21, DOI: 10.1021/acsnano.5b01181
- 147Valle, R. P.; Huang, C. L.; Loo, J. S. C.; Zuo, Y. Y. Increasing Hydrophobicity of Nanoparticles Intensifies Lung Surfactant Film Inhibition and Particle Retention. ACS Sustainable Chem. Eng. 2014, 2 (7), 1574– 1580, DOI: 10.1021/sc500100b
- 148Yang, Y.; Xu, L.; Dekkers, S.; Zhang, L. G.; Cassee, F. R.; Zuo, Y. Y. Aggregation State of Metal-Based Nanomaterials at the Pulmonary Surfactant Film Determines Biophysical Inhibition. Environ. Sci. Technol. 2018, 52 (15), 8920– 8929, DOI: 10.1021/acs.est.8b02976
- 149Sorli, J. B.; Huang, Y.; Da Silva, E.; Hansen, J. S.; Zuo, Y. Y.; Frederiksen, M.; Norgaard, A. W.; Ebbehoj, N. E.; Larsen, S. T.; Hougaard, K. S. Prediction of Acute Inhalation Toxicity using in Vitro Lung Surfactant Inhibition. Altex 2018, 35 (1), 26– 36, DOI: 10.14573/altex.1705181
- 150Sorli, J. B.; Balogh Sivars, K.; Da Silva, E.; Hougaard, K. S.; Koponen, I. K.; Zuo, Y. Y.; Weydahl, I. E. K.; Aberg, P. M.; Fransson, R. Bile Salt Enhancers for Inhalation: Correlation between in Vitro and in Vivo Lung Effects. Int. J. Pharm. 2018, 550 (1–2), 114– 122, DOI: 10.1016/j.ijpharm.2018.08.031
- 151Chen, Y.; Yang, Y.; Xu, B.; Wang, S.; Li, B.; Ma, J.; Gao, J.; Zuo, Y. Y.; Liu, S. Mesoporous Carbon Nanomaterials Induced Pulmonary Surfactant Inhibition, Cytotoxicity, Inflammation and Lung Fibrosis. J. Environ. Sci. 2017, 62, 100– 114, DOI: 10.1016/j.jes.2017.08.018
- 152Wu, Y.; Guo, Y.; Song, H.; Liu, W.; Yang, Y.; Liu, Y.; Sang, N.; Zuo, Y. Y.; Liu, S. Oxygen Content Determines the Bio-Reactivity and Toxicity Profiles of Carbon Black Particles. Ecotoxicol. Environ. Saf. 2018, 150, 207– 214, DOI: 10.1016/j.ecoenv.2017.12.044
- 153Yang, Y.; Wu, Y.; Ren, Q.; Zhang, L. G.; Liu, S.; Zuo, Y. Y. Biophysical Assessment of Pulmonary Surfactant Predicts the Lung Toxicity of Nanomaterials. Small Methods 2018, 2 (4), 1700367, DOI: 10.1002/smtd.201700367
- 154Numata, M.; Mitchell, J. R.; Tipper, J. L.; Brand, J. D.; Trombley, J. E.; Nagashima, Y.; Kandasamy, P.; Chu, H. W.; Harrod, K. S.; Voelker, D. R. Pulmonary Surfactant Lipids Inhibit Infections with the Pandemic H1N1 Influenza Virus in Several Animal Models. J. Biol. Chem. 2020, 295 (6), 1704– 1715, DOI: 10.1074/jbc.RA119.012053
- 155Veldhuizen, R. A.; Yao, L.-J.; Hearn, S. A.; Possmayer, F.; Lewis, J. F. Surfactant-Associated Protein A Is Important for Maintaining Surfactant Large-Aggregate Forms during Surface-Area Cycling. Biochem. J. 1996, 313 (3), 835– 840, DOI: 10.1042/bj3130835
- 156Veldhuizen, R. A.; Ito, Y.; Marcou, J.; Yao, L. J.; McCaig, L.; Lewis, J. F. Effects of Lung Injury on Pulmonary Surfactant Aggregate Conversion in Vivo and in Vitro. Am. J. Physiol. 1997, 272 (5), L872– L878, DOI: 10.1152/ajplung.1997.272.5.L872
- 157Quintero, O. A.; Wright, J. R. Clearance of Surfactant Lipids by Neutrophils and Macrophages Isolated From the Acutely Inflamed Lung. Am. J. Physiol Lung Cell Mol. Physiol 2002, 282 (2), L330– 9, DOI: 10.1152/ajplung.00190.2001
- 158Busani, S.; Dall’Ara, L.; Tonelli, R.; Clini, E.; Munari, E.; Venturelli, S.; Meschiari, M.; Guaraldi, G.; Cossarizza, A.; Ranieri, V. M.; Girardis, M. Surfactant Replacement Might Help Recovery of Low-Compliance Lung in Severe COVID-19 Pneumonia. Ther. Adv. Respir. Dis. 2020, 14, 175346662095104, DOI: 10.1177/1753466620951043
- 159Hu, Q.; Bai, X.; Hu, G.; Zuo, Y. Y. Unveiling the Molecular Structure of Pulmonary Surfactant Corona on Nanoparticles. ACS Nano 2017, 11 (7), 6832– 6842, DOI: 10.1021/acsnano.7b01873
- 160Cedervall, T.; Lynch, I.; Lindman, S.; Berggard, T.; Thulin, E.; Nilsson, H.; Dawson, K. A.; Linse, S. Understanding the Nanoparticle-Protein Corona Using Methods to Quantify Exchange Rates and Affinities of Proteins for Nanoparticles. Proc. Natl. Acad. Sci. U. S. A. 2007, 104 (7), 2050– 5, DOI: 10.1073/pnas.0608582104
- 161Lynch, I.; Dawson, K. A. Protein-Nanoparticle Interactions. Nano Today 2008, 3 (1–2), 40– 47, DOI: 10.1016/S1748-0132(08)70014-8
- 162Monopoli, M. P.; Aberg, C.; Salvati, A.; Dawson, K. A. Biomolecular Coronas Provide the Biological Identity of Nanosized Materials. Nat. Nanotechnol. 2012, 7 (12), 779– 86, DOI: 10.1038/nnano.2012.207
- 163Ke, P. C.; Lin, S.; Parak, W. J.; Davis, T. P.; Caruso, F. A Decade of the Protein Corona. ACS Nano 2017, 11 (12), 11773– 11776, DOI: 10.1021/acsnano.7b08008
- 164Nel, A. E.; Madler, L.; Velegol, D.; Xia, T.; Hoek, E. M.; Somasundaran, P.; Klaessig, F.; Castranova, V.; Thompson, M. Understanding Biophysicochemical Interactions at the Nano-Bio Interface. Nat. Mater. 2009, 8 (7), 543– 57, DOI: 10.1038/nmat2442
- 165Aggarwal, P.; Hall, J. B.; McLeland, C. B.; Dobrovolskaia, M. A.; McNeil, S. E. Nanoparticle Interaction with Plasma Proteins as It Relates to Particle Biodistribution, Biocompatibility and Therapeutic Efficacy. Adv. Drug Delivery Rev. 2009, 61 (6), 428– 37, DOI: 10.1016/j.addr.2009.03.009
- 166Raesch, S. S.; Tenzer, S.; Storck, W.; Rurainski, A.; Selzer, D.; Ruge, C. A.; Perez-Gil, J.; Schaefer, U. F.; Lehr, C. M. Proteomic and Lipidomic Analysis of Nanoparticle Corona upon Contact with Lung Surfactant Reveals Differences in Protein, but Not Lipid Composition. ACS Nano 2015, 9 (12), 11872– 85, DOI: 10.1021/acsnano.5b04215
- 167Kapralov, A. A.; Feng, W. H.; Amoscato, A. A.; Yanamala, N.; Balasubramanian, K.; Winnica, D. E.; Kisin, E. R.; Kotchey, G. P.; Gou, P.; Sparvero, L. J.; Ray, P.; Mallampalli, R. K.; Klein-Seetharaman, J.; Fadeel, B.; Star, A.; Shvedova, A. A.; Kagan, V. E. Adsorption of Surfactant Lipids by Single-Walled Carbon Nanotubes in Mouse Lung Upon Pharyngeal Aspiration. ACS Nano 2012, 6 (5), 4147– 56, DOI: 10.1021/nn300626q
- 168Thorley, A. J.; Ruenraroengsak, P.; Potter, T. E.; Tetley, T. D. Critical Determinants of Uptake and Translocation of Nanoparticles by the Human Pulmonary Alveolar Epithelium. ACS Nano 2014, 8 (11), 11778– 11789, DOI: 10.1021/nn505399e
- 169Vranic, S.; Garcia-Verdugo, I.; Darnis, C.; Sallenave, J. M.; Boggetto, N.; Marano, F.; Boland, S.; Baeza-Squiban, A. Internalization of SiO2 Nanoparticles by Alveolar Macrophages and Lung Epithelial Cells and Its Modulation by the Lung Surfactant Substitute Curosurf. Environ. Sci. Pollut. Res. 2013, 20 (5), 2761– 70, DOI: 10.1007/s11356-012-1436-5
- 170Cao, Z.; Tsai, S. N.; Zuo, Y. Y. An Optical Method for Quantitatively Determining the Surface Free Energy of Micro- and Nanoparticles. Anal. Chem. 2019, 91 (20), 12819– 12826, DOI: 10.1021/acs.analchem.9b02507
- 171Sund, J.; Alenius, H.; Vippola, M.; Savolainen, K.; Puustinen, A. Proteomic Characterization of Engineered Nanomaterial-Protein Interactions in Relation to Surface Reactivity. ACS Nano 2011, 5 (6), 4300– 9, DOI: 10.1021/nn101492k
- 172Schulze, C.; Schaefer, U. F.; Ruge, C. A.; Wohlleben, W.; Lehr, C. M. Interaction of Metal Oxide Nanoparticles with Lung Surfactant Protein A. Eur. J. Pharm. Biopharm. 2011, 77 (3), 376– 83, DOI: 10.1016/j.ejpb.2010.10.013
- 173Schleh, C.; Holzwarth, U.; Hirn, S.; Wenk, A.; Simonelli, F.; Schaffler, M.; Moller, W.; Gibson, N.; Kreyling, W. G. Biodistribution of Inhaled Gold Nanoparticles in Mice and the Influence of Surfactant Protein D. J. Aerosol Med. Pulm. Drug Delivery 2013, 26 (1), 24– 30, DOI: 10.1089/jamp.2011.0951
- 174Evans, M. Avoiding COVID-19: Aerosol Guidelines. medRxiv, June 5, 2020, ver. 1.https://www.medrxiv.org/content/10.1101/2020.05.21.20108894v3 (accessed 2020-06-05).
- 175Buonanno, G.; Morawska, L.; Stabile, L. Quantitative Assessment of the Risk of Airborne Transmission of SARS-CoV-2 Infection: Prospective and Retrospective applications. Environ. Int. 2020, 145, 106112, DOI: 10.1016/j.envint.2020.106112
- 176Wrapp, D.; Wang, N.; Corbett, K. S.; Goldsmith, J. A.; Hsieh, C.-L.; Abiona, O.; Graham, B. S.; McLellan, J. S. Cryo-EM Structure of the 2019-nCoV Spike in the Prefusion Conformation. Science 2020, 367 (6483), 1260– 1263, DOI: 10.1126/science.abb2507
- 177Walls, A. C.; Tortorici, M. A.; Bosch, B.-J.; Frenz, B.; Rottier, P. J.; DiMaio, F.; Rey, F. A.; Veesler, D. Cryo-Electron Microscopy Structure of a Coronavirus Spike Glycoprotein Trimer. Nature 2016, 531 (7592), 114– 117, DOI: 10.1038/nature16988
- 178Walls, A. C.; Park, Y.-J.; Tortorici, M. A.; Wall, A.; McGuire, A. T.; Veesler, D. Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. Cell 2020, 181 (2), 281– 292, DOI: 10.1016/j.cell.2020.02.058
- 179Yan, R.; Zhang, Y.; Li, Y.; Xia, L.; Guo, Y.; Zhou, Q. Structural Basis for the Recognition of SARS-CoV-2 by Full-Length Human ACE2. Science 2020, 367 (6485), 1444– 1448, DOI: 10.1126/science.abb2762
- 180Woo, H.; Park, S.-J.; Choi, Y. K.; Park, T.; Tanveer, M.; Cao, Y.; Kern, N. R.; Lee, J.; Yeom, M. S.; Croll, T. I.; Seok, C.; Im, W. Developing a Fully-Glycosylated Full-Length SARS-CoV-2 Spike Protein Model in a Viral Membrane. J. Phys. Chem. B 2020, 124 (33), 7128– 7137, DOI: 10.1021/acs.jpcb.0c04553
- 181Casalino, L.; Gaieb, Z.; Goldsmith, J. A.; Hjorth, C. K.; Dommer, A. C.; Harbison, A. M.; Fogarty, C. A.; Barros, E. P.; Taylor, B. C.; McLellan, J. S.; Fadda, E.; Amaro, R. E. Beyond Shielding: The Roles of Glycans in SARS-CoV-2 Spike Protein. ACS Cent. Sci. 2020, 6 (10), 1722– 1734, DOI: 10.1021/acscentsci.0c01056
- 182Turoňová, B.; Sikora, M.; Schürmann, C.; Hagen, W. J.; Welsch, S.; Blanc, F. E.; von Bülow, S.; Gecht, M.; Bagola, K.; Hörner, C.In Situ Structural Analysis of SARS-CoV-2 Spike Reveals Flexibility Mediated by Three Hinges. Science 2020, 370 (6513), 203– 208, DOI: 10.1126/science.abd5223
- 183Ali, A.; Vijayan, R. Dynamics of the ACE2–SARS-CoV-2/SARS-CoV Spike Protein Interface Reveal Unique Mechanisms. Sci. Rep. 2020, 10 (1), 14214, DOI: 10.1038/s41598-020-71188-3
- 184Serapian, S. A.; Marchetti, F.; Triveri, A.; Morra, G.; Meli, M.; Moroni, E.; Sautto, G. A.; Rasola, A.; Colombo, G. The Answer Lies in the Energy: How Simple Atomistic Molecular Dynamics Simulations May Hold the Key to Epitope Prediction on the Fully Glycosylated SARS-CoV-2 Spike Protein. J. Phys. Chem. Lett. 2020, 11 (19), 8084– 8093, DOI: 10.1021/acs.jpclett.0c02341
- 185Frenkel, D.; Smit, B. Understanding Molecular Simulation: From Algorithms to Applications, 2nd ed; Academic Press: San Diego, 2001.
- 186Warshel, A. Computer Modeling of Chemical Reactions in Enzymes and Solutions; Wiley: New York, 1991.
- 187Durrant, J. D.; Kochanek, S. E.; Casalino, L.; Ieong, P. U.; Dommer, A. C.; Amaro, R. E. Mesoscale All-Atom Influenza Virus Simulations Suggest New Substrate Binding Mechanism. ACS Cent. Sci. 2020, 6 (2), 189– 196, DOI: 10.1021/acscentsci.9b01071
- 188Shekhar, A.; Nomura, K.-i.; Kalia, R. K.; Nakano, A.; Vashishta, P. Nanobubble Collapse on a Silica Surface in Water: Billion-Atom Reactive Molecular Dynamics Simulations. Phys. Rev. Lett. 2013, 111 (18), 184503, DOI: 10.1103/PhysRevLett.111.184503
- 189Shaw, D. E.; Maragakis, P.; Lindorff-Larsen, K.; Piana, S.; Dror, R. O.; Eastwood, M. P.; Bank, J. A.; Jumper, J. M.; Salmon, J. K.; Shan, Y.; Wriggers, W. Atomic-Level Characterization of the Structural Dynamics of Proteins. Science 2010, 330 (6002), 341– 346, DOI: 10.1126/science.1187409
- 190Wei, T.; Carignano, M. A.; Szleifer, I. Molecular Dynamics Simulation of Lysozyme Adsorption/Desorption on Hydrophobic Surfaces. J. Phys. Chem. B 2012, 116 (34), 10189– 10194, DOI: 10.1021/jp304057e
- 191Wei, T.; Huang, T.; Qiao, B.; Zhang, M.; Ma, H.; Zhang, L. Structures, Dynamics, and Water Permeation Free Energy across Bilayers of Lipid A and Its Analog Studied with Molecular Dynamics Simulation. J. Phys. Chem. B 2014, 118 (46), 13202– 13209, DOI: 10.1021/jp508549m
- 192Wei, T.; Sajib, M. S. J.; Samieegohar, M.; Ma, H.; Shing, K. Self-Assembled Monolayers of an Azobenzene Derivative on Silica and Their Interactions with Lysozyme. Langmuir 2015, 31 (50), 13543– 13552, DOI: 10.1021/acs.langmuir.5b03603
- 193Zheng, J.; Li, L.; Tsao, H.-K.; Sheng, Y.-J.; Chen, S.; Jiang, S. Strong Repulsive Forces between Protein and Oligo (Ethylene Glycol) Self-Assembled Monolayers: A Molecular Simulation Study. Biophys. J. 2005, 89 (1), 158– 166, DOI: 10.1529/biophysj.105.059428
- 194Nakano, C. M.; Ma, H.; Wei, T. Study of Lysozyme Mobility and Binding Free Energy during Adsorption on a Graphene Surface. Appl. Phys. Lett. 2015, 106 (15), 153701, DOI: 10.1063/1.4918292
- 195Wei, T.; Carignano, M. A.; Szleifer, I. Lysozyme Adsorption on Polyethylene Surfaces: Why Are Long Simulations Needed?. Langmuir 2011, 27 (19), 12074– 12081, DOI: 10.1021/la202622s
- 196Amaro, R. E.; Mulholland, A. J. A Community Letter Regarding Sharing Biomolecular Simulation Data for COVID-19. J. Chem. Inf. Model. 2020, 60 (6), 2653– 2656, DOI: 10.1021/acs.jcim.0c00319
- 197Watanabe, Y.; Allen, J. D.; Wrapp, D.; McLellan, J. S.; Crispin, M. Site-Specific Glycan Analysis of the SARS-CoV-2 Spike. Science 2020, 369 (6501), 330– 333, DOI: 10.1126/science.abb9983
- 198Shajahan, A.; Supekar, N. T.; Gleinich, A. S.; Azadi, P. Deducing the N-and O-Glycosylation Profile of the Spike Protein of Novel Coronavirus SARS-CoV-2. Glycobiology 2020, cwaa042, DOI: 10.1093/glycob/cwaa042
- 199Brooks, B. R.; Bruccoleri, R. E.; Olafson, B. D.; States, D. J.; Swaminathan, S. A.; Karplus, M. CHARMM: A Program for Macromolecular Energy, Minimization, and Dynamics Calculations. J. Comput. Chem. 1983, 4 (2), 187– 217, DOI: 10.1002/jcc.540040211
- 200MacKerell, A. D., Jr; Bashford, D.; Bellott, M.; Dunbrack, R. L., Jr; Evanseck, J. D.; Field, M. J.; Fischer, S.; Gao, J.; Guo, H.; Ha, S.All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins. J. Phys. Chem. B 1998, 102 (18), 3586– 3616, DOI: 10.1021/jp973084f
- 201Mallajosyula, S. S.; Guvench, O.; Hatcher, E.; MacKerell, A. D., Jr CHARMM Additive All-Atom Force Field for Phosphate and Sulfate Linked to Carbohydrates. J. Chem. Theory Comput. 2012, 8 (2), 759– 776, DOI: 10.1021/ct200792v
- 202Cornell, W. D.; Cieplak, P.; Bayly, C. I.; Gould, I. R.; Merz, K. M.; Ferguson, D. M.; Spellmeyer, D. C.; Fox, T.; Caldwell, J. W.; Kollman, P. A. A Second Generation Force Field for the Simulation of Proteins, Nucleic Acids, and Organic Molecules. J. Am. Chem. Soc. 1995, 117 (19), 5179– 5197, DOI: 10.1021/ja00124a002
- 203Duan, Y.; Wu, C.; Chowdhury, S.; Lee, M. C.; Xiong, G.; Zhang, W.; Yang, R.; Cieplak, P.; Luo, R.; Lee, T.A Point-Charge Force Field for Molecular Mechanics Simulations of Proteins Based on Condensed-Phase Quantum Mechanical Calculations. J. Comput. Chem. 2003, 24 (16), 1999– 2012, DOI: 10.1002/jcc.10349
- 204Maier, J. A.; Martinez, C.; Kasavajhala, K.; Wickstrom, L.; Hauser, K. E.; Simmerling, C. ff14SB: Improving the Accuracy of Protein Side Chain and Backbone Parameters from ff99SB. J. Chem. Theory Comput. 2015, 11 (8), 3696– 3713, DOI: 10.1021/acs.jctc.5b00255
- 205Jorgensen, W. L.; Maxwell, D. S.; Tirado-Rives, J. Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids. J. Am. Chem. Soc. 1996, 118 (45), 11225– 11236, DOI: 10.1021/ja9621760
- 206Kony, D.; Damm, W.; Stoll, S.; Van Gunsteren, W. F. An Improved OPLS-AA Force Field for Carbohydrates. J. Comput. Chem. 2002, 23 (15), 1416– 1429, DOI: 10.1002/jcc.10139
- 207Voth, G. A. Coarse-Graining of Condensed Phase and Biomolecular Systems; CRC Press: Boca Raton, 2008.
- 208Kmiecik, S.; Gront, D.; Kolinski, M.; Wieteska, L.; Dawid, A. E.; Kolinski, A. Coarse-Grained Protein Models and Their Applications. Chem. Rev. 2016, 116 (14), 7898– 7936, DOI: 10.1021/acs.chemrev.6b00163
- 209Marrink, S. J.; Risselada, H. J.; Yefimov, S.; Tieleman, D. P.; De Vries, A. H. The MARTINI Force Field: Coarse Grained Model for Biomolecular Simulations. J. Phys. Chem. B 2007, 111 (27), 7812– 7824, DOI: 10.1021/jp071097f
- 210Woo, H.; Park, S.-J.; Choi, Y. K.; Park, T.; Tanveer, M.; Cao, Y.; Kern, N. R.; Lee, J.; Yeom, M. S.; Croll, T.; Seok, C.; Im, W. Developing a Fully Glycosylated Full-Length SARS-CoV-2 Spike Protein Model in a Viral Membrane. J. Phys. Chem. B 2020, 124 (33), 7128– 7137, DOI: 10.1021/acs.jpcb.0c04553
- 211Webb, M. A.; Delannoy, J.-Y.; De Pablo, J. J. Graph-Based Approach to Systematic Molecular Coarse-Graining. J. Chem. Theory Comput. 2019, 15 (2), 1199– 1208, DOI: 10.1021/acs.jctc.8b00920
- 212Parks, J. M.; Smith, J. C. How to Discover Antiviral Drugs Quickly. N. Engl. J. Med. 2020, 382 (23), 2261– 2264, DOI: 10.1056/NEJMcibr2007042
- 213Baig, M. S.; Alagumuthu, M.; Rajpoot, S.; Saqib, U. Identification of a Potential Peptide Inhibitor of SARS-CoV-2 Targeting Its Entry into the Host Cells. Drugs R&D 2020, 20 (3), 161– 169, DOI: 10.1007/s40268-020-00312-5
- 214Zhang, C.; Zheng, W.; Huang, X.; Bell, E. W.; Zhou, X.; Zhang, Y. Protein Structure and Sequence Re-Analysis of 2019-nCoV Genome Does Not Indicate Snakes as its Intermediate Host or the Unique Similarity between its Spike Protein Insertions and HIV-1. J. Proteome Res. 2020, 19, 1351– 1360, DOI: 10.1021/acs.jproteome.0c00129
- 215Buehler, M. J. Nanomechanical Sonification of the 2019-nCoV Coronavirus Spike Protein through a Materiomusical Approach. arXiv (Popular Physics), March 30, 2020, 2003.14258, ver.1. https://arxiv.org/abs/2003.14258 (accessed 2020-03-30).
- 216Gur, M.; Taka, E.; Yilmaz, S. Z.; Kilinc, C.; Aktas, U.; Golcuk, M. Exploring Conformational Transition of 2019 Novel Coronavirus Spike Glycoprotein Between Its Closed and Open States Using Molecular Dynamics Simulations. J. Chem. Phys. 2020, 153, 075101, DOI: 10.1063/5.0011141
- 217Letko, M.; Marzi, A.; Munster, V. Functional Assessment of Cell Entry and Receptor Usage for SARS-CoV-2 and Other Lineage B Betacoronaviruses. Nature Microbiology 2020, 5 (4), 562– 569, DOI: 10.1038/s41564-020-0688-y
- 218Lan, J.; Ge, J.; Yu, J.; Shan, S.; Zhou, H.; Fan, S.; Zhang, Q.; Shi, X.; Wang, Q.; Zhang, L.; Wang, X. Structure of the SARS-CoV-2 Spike Receptor-Binding Domain Bound to the ACE2 Receptor. Nature 2020, 581 (7807), 215– 220, DOI: 10.1038/s41586-020-2180-5
- 219Hati, S.; Bhattacharyya, S. Impact of Thiol-Disulfide Balance on the Binding of Covid-19 Spike Protein with Angiotensin Converting Enzyme 2 Receptor. ACS Omega 2020, 5 (26), 16292– 16298, DOI: 10.1021/acsomega.0c02125
- 220Wang, J.; Xu, X.; Zhou, X.; Chen, P.; Liang, H.; Li, X.; Zhong, W.; Hao, P. Molecular Simulation of SARS-CoV-2 Spike Protein Binding to Pangolin ACE2 or Human ACE2 Natural Variants Reveals Altered Susceptibility to Infection. J. Gen. Virol. 2020, 101 (9), 921– 924, DOI: 10.1099/jgv.0.001452
- 221Han, Y.; Král, P. Computational Design of ACE2-Based Peptide Inhibitors of SARS-CoV-2. ACS Nano 2020, 14 (4), 5143– 5147, DOI: 10.1021/acsnano.0c02857
- 222Qiao, B.; Olvera de la Cruz, M. Enhanced Binding of SARS-CoV-2 Spike Protein to Receptor by Distal Polybasic Cleavage Sites. ACS Nano 2020, 14 (8), 10616– 10623, DOI: 10.1021/acsnano.0c04798
__
Ei kommentteja:
Lähetä kommentti
You are welcome to show your opinion here!