in Cancer 101, The Basics
Remember back in high school chemistry when you learned about acid/alkaline balance, also referred to as the body’s pH (“potential Hydrogen” or “powers of Hydrogen”)? Our pH is measured on a scale from 0 to 14, with 7.35 being neutral (normal), below 7.35 is acidic (with 0 being the most acidic) and above 7.35 is alkaline (with 14 being the most alkaline
Hydrogen is both a proton and an electron. If the electron is stripped off, then the resulting positive ion is a proton. In short, it is important to note that alkaline substances (also called “bases”) are proton “acceptors” (“+” charge) while acids are proton “donors” (“-” charge). Since bases have a higher pH, they have a greater potential to absorb hydrogen ions and vice versa for acids.
In chemistry, we know that water (H2O) decomposes into hydrogen ions (H+) and hydroxyl ions (OH-). When a solution contains more hydrogen ions than hydroxyl ions, then it is said to be acid. When it contains more hydroxyl ions than hydrogen ions, then it is said to be alkaline. As you may have guessed, a pH of 7.35 is neutral because it contains equal amounts of hydrogen ions and hydroxyl ions.
Over 70% of our bodies are water. When cells create energy via aerobic respiration, they burn oxygen and glucose. In simple terms, in order for the body to create energy it requires massive amounts of hydrogen. As a matter of fact, each day your body uses about ½ pound of pure hydrogen. Even our DNA is held together by hydrogen bonds and since the pH of bases is higher, they have a greater potential to absorb hydrogen, which results in more oxygen delivered to the cells.
The hydrogen ion concentration varies over 14 powers of 10, thus a change of one pH unit changes the hydrogen ion concentration by a factor of 10. The pH scale is a common logarithmic scale. For those of you who never liked math, what this means is that a substance which has a pH of 5.2 is 10 times more acidic than a substance with a pH of 6.2, while it is 100 (10 squared) times more acidic than a substance with a pH of 7.2, and it is 1,000 (10 cubed) times more acidic than a substance with a pH of 8.2, etc…
Our blood must always maintain a pH of approximately 7.35 so that it can continue to transport oxygen. Thus, God has made our bodies resilient with the ability to self-correct in the event of an imbalanced pH level through a mechanism called the buffer system. In chemistry, a buffer is a substance which neutralizes acids, thus keeping the pH of a solution relatively constant despite the addition of considerable amounts of acids or bases. However, the American diet (United States) being full of junk foods, fast foods, processed foods, and sodas, puts the body through “the ringer” in order to maintain the proper pH in the blood. Although our bodies typically maintain alkaline reserves which are utilized to buffer acids in these situations, it is safe to say that many of us have depleted our reserves.
When our buffering system reaches overload and we are depleted of reserves, the excess acids are dumped into the tissues. As more and more acid is accumulated, our tissues begin to deteriorate. The acid wastes oxidize (“rust”) the veins and arteries and begin to destroy cell walls and organs. Having an acidic pH is like driving your car with the “check engine” light on. It’s a sign that something is wrong with the engine and if we don’t get it fixed, then eventually the car will break down.
According to Keiichi Morishita in his book, Hidden Truth of Cancer, as the blood becomes acidic, the body deposits acidic substances into cells to remove them from the blood. This allows the blood to remain slightly alkaline. However, it causes the cells to become acidic and toxic. Over time, many of these cells increase in acidity and some die. However, some of these acidified cells adapt to the new environment. In other words, instead of dying (as normal cells do in an acidic environment) some cells survive by becoming abnormal cells. These abnormal cells are called “malignant” cells, and they do not correspond with brain function or the DNA memory code. Therefore, malignant cells grow indefinitely and without order. This is cancer.
Putting too much acid in your body is like putting poison in your fish tank. Several years ago, we purchased a fish tank and a couple of goldfish for our children. After killing both goldfish, we quickly learned that the key factor in keeping fish alive is the condition of the water. If their water isn’t balanced, then they die quickly. We also learned that you can kill a fish rapidly if you feed it the wrong foods! Now, compare this to the condition of our internal “fish tank.” Many of us are filling our fish tanks with chemicals, toxins, and the wrong foods which lower our pH balance, and an acidic pH results in oxygen deprivation at the cellular level.
So, what other things can we do to keep our tissue pH in the proper range? The easiest thing is to eat mostly alkaline foods. The general rule of thumb is to eat 20% acid foods and 80% alkaline foods. Fresh fruit juice also supplies your body with a plethora of alkaline substances. You can take supplements, such as potassium, cesium, magnesium, calcium, and rubidium, which are all highly alkaline.
Some excellent alkaline-forming foods are as follows: most raw vegetables and fruits, figs, lima beans, olive oil, honey, molasses, apple cider vinegar, miso, tempeh, raw milk, raw cheese, stevia, green tea, most herbs, sprouted grains, sprouts, wheat grass, and barley grass.
Foods such as yogurt, kefir, and butter are basically neutral. Several acid-forming foods are as follows: sodas, coffee, alcohol, chocolate, tobacco, aspartame, meats, oysters, fish, eggs, chicken, pasteurized milk, processed grains, sugar, peanut butter, beans, and pasta.
_
http://thetruthaboutcancer.com/understanding-blood-ph-and-its-critical-role-in-the-prevention-of-cancer/
Warburg effect - Nobelisti Otto Heinrich Warburg
Nobel palkinnon voittanut tohtori Otto Warburg keksi, että laskemalla kudosten happipitoisuutta 35 % kahden vuorokauden ajaksi, normaalit solut muuttuivat syöpäsoluiksi.
Syöpäpotilailla veren happisaturaatio on normaalia alhaisempi, yleensä noin 60 % luokkaa (pulssioksimetrialla mitattuna).
The Warburg Effect describes the observation that cancer cells, and many cells grown in-vitro, exhibit glucose fermentation even when enough oxygen is present to properly respire.
The Warburg hypothesis, sometimes known as the Warburg Theory of Cancer postulates that the driver of tumorigenesis is an insufficient cellular respiration caused by insult to mitochondria.[1] The Warburg Effect describes the observation that cancer cells, and many cells grown in-vitro, exhibit glucose fermentation even when enough oxygen is present to properly respire. In other words, instead of fully respiring in the presence of adequate oxygen, cancer cells ferment. The current popular opinion is that cancer cells ferment glucose while keeping up the same level of respiration that was present before the process of carcinogenesis, and thus the Warburg Effect would be defined as the observation that cancer cells exhibit glycolysis with lactate secretion and mitochondrial respiration even in the presence of oxygen.[2]
Warburg's hypothesis was postulated by the Nobel laureate Otto Heinrich Warburg in 1924.[3] He hypothesized that cancer, malignant growth, and tumor growth are caused by the fact that tumor cells mainly generate energy (as e.g. adenosine triphosphate / ATP) by non-oxidative breakdown of glucose (a process called glycolysis). This is in contrast to "healthy" cells which mainly generate energy from oxidative breakdown of pyruvate. Pyruvate is an end-product of glycolysis, and is oxidized within the mitochondria. Hence, according to Warburg, the driver of cancer cells should be interpreted as stemming from a lowering of mitochondrial respiration. Warburg reported a fundamental difference between normal and cancerous cells to be the ratio of glycolysis to respiration; this observation is also known as the Warburg effect.
_
http://en.wikipedia.org/wiki/Warburg_hypothesis
Soluhengitys ja käyminen, eli hapeton (anaerobinen) energiantuotto
_
http://thetruthaboutcancer.com/understanding-blood-ph-and-its-critical-role-in-the-prevention-of-cancer/
______________
Warburg effect - Nobelisti Otto Heinrich Warburg
Syöpäpotilailla veren happisaturaatio on normaalia alhaisempi, yleensä noin 60 % luokkaa (pulssioksimetrialla mitattuna).
The Warburg Effect describes the observation that cancer cells, and many cells grown in-vitro, exhibit glucose fermentation even when enough oxygen is present to properly respire.
The Warburg hypothesis, sometimes known as the Warburg Theory of Cancer postulates that the driver of tumorigenesis is an insufficient cellular respiration caused by insult to mitochondria.[1] The Warburg Effect describes the observation that cancer cells, and many cells grown in-vitro, exhibit glucose fermentation even when enough oxygen is present to properly respire. In other words, instead of fully respiring in the presence of adequate oxygen, cancer cells ferment. The current popular opinion is that cancer cells ferment glucose while keeping up the same level of respiration that was present before the process of carcinogenesis, and thus the Warburg Effect would be defined as the observation that cancer cells exhibit glycolysis with lactate secretion and mitochondrial respiration even in the presence of oxygen.[2]
Warburg's hypothesis was postulated by the Nobel laureate Otto Heinrich Warburg in 1924.[3] He hypothesized that cancer, malignant growth, and tumor growth are caused by the fact that tumor cells mainly generate energy (as e.g. adenosine triphosphate / ATP) by non-oxidative breakdown of glucose (a process called glycolysis). This is in contrast to "healthy" cells which mainly generate energy from oxidative breakdown of pyruvate. Pyruvate is an end-product of glycolysis, and is oxidized within the mitochondria. Hence, according to Warburg, the driver of cancer cells should be interpreted as stemming from a lowering of mitochondrial respiration. Warburg reported a fundamental difference between normal and cancerous cells to be the ratio of glycolysis to respiration; this observation is also known as the Warburg effect.
_
http://en.wikipedia.org/wiki/Warburg_hypothesis
Soluhengitys ja käyminen, eli hapeton (anaerobinen) energiantuotto
Mitokondrio on soluelin, jossa soluhengitys tapahtuu.
Mitokondriot ovat solujen voimaloita, joissa energiaa muodostetaan kemiallisesti, ja se varastoidaan korkeaenergiaisiin fosfaatteihin, yleensä ATP:hen eli adenosiinitrifosfaattiin
Soluhengitys on aerobisissa (happea saatavilla) oloissa elävien solujen aineenvaihdunnallinen reaktio, jonka avulla solut vapauttavat ravinnon sisältämää energiaa käyttöönsä
Yksinkertaistettuna soluhengityksen lähtöaineina ovat glukoosi ja happi ja lopputuotteena syntyy hiilidioksidia ja vettä. Reaktioissa vapautuu ATP-molekyylien (fosfaatti -sidos) sidoksien purkautuessa energiaa (36 x ATP).
Elektroninsiirtoketju (ja mitokondrio)
Katabolisen aineenvaihdunnan viimeinen vaihe on elektroninsiirtoketju, joka on yhteydessä oksidatiiviseen fosforylaatioon.
Videossa tutustutaan myös mitokondrion rakenteeseen.
Soluhengitys - CellularRespiration -Animaatio
Anaerobisissa olosuhteissa soluhengitys ei pääse etenemään glykolyysivaihetta pidemmälle, jolloin tapahtuu käymistä.
Käyminen voi olla joko maitohappo- tai alkoholikäymistä.
Käymisessä saatavan ATP:n määrä on hyvin pieni (2 x ATP), verrattuna aerobisissa oloissa tapahtuvaan soluhengitykseen.
Käyminen, eli fermentointi on aineenvaihduntatapahtuma, jossa pilkotaan orgaanisia aineita, usein hiilihydraatteja tai aminohappoja, energian saamiseksi. Käyminen tapahtuu tavallisesti ilman happea, mutta on olemassa myös niin sanottuja hapetuskäymisiä, jotka vaativat happea.
Käyminen tapahtuu solun sisällä.
Alkoholikäymisessä sokeri (yleensä glukoosi) hajoaa hiivan (Saccharomyces cerevisiae) tai bakteerien sisältämien entsyymien katalysoimissa aineenvaihduntareaktioissa pyruvaatiksi. Reaktiota nimitetään glykolyysiksi, ja sen yhteydessä syntyy ATP:tä solun energianlähteeksi. Glykolyysissä syntynyt pyruvaatti puolestaan hajoaa edelleen asetaldehydiksi ja hiilidioksidiksi.
Käymisreaktio on anaerobinen eli ei edellytä happea.
Nisäkkäillä lihassolut voivat tuottaa energiaa maitohappokäymisellä, elleivät ne saa verenkierrosta riittävästi happea. Maitohapon kertyminen soluihin aiheuttaa lihaskipua. Rasituksen loputtua maitohappo kulkeutuu lihaksista veren mukana maksaan, jossa se muuntuu takaisin pyruvaatiksi.
Glukoosi hajoaa solulimassa kahdeksi pyruvaatti-molekyyliksi (palorypälehappo) reaktiossa, jota kutsutaan glykolyysiksi, tai jos pyruvaatti pelkistyy maitohapoksi eikä jatka matkaansa mitokondrioon, anaerobiseksi (hapettomaksi) glykolyysiksi.
Pyruvaatin pelkistyessä NADH luovuttaa saamansa vedyn pyruvaatille. Glykolyysissä muodostuu yhtä glukoosia kohden 2 ATP molekyyliä, sekä kumpaakin puryvaattia kohden 6 vety-ionia (protonia), eli yhteensä 12 protonia, jotka pelkistävät NAD+ tai NADP+ (dihydronikotiiniamidi-adeniini-dinukleotidi/-"-fosfaatti) ionit. Muodostuneet NADH ja NADPH molekyylit siirtävät protonit elekronisiirtoketjun käyttöön, jos happea on tarpeeksi soluhengityksen käynnistämiseen
_
Jos kuitenkaan soluissa ei ole mitokondrioita, jossa soluhengitys voi tapahtua (veren punasolut ovat tällaisia) tai ei ole happea käytössä (kuten happivelassa), niin pyruvaatti muuntuu maitohapoiksi. Tällaista maitohappoon päättyvää glykolyysiä sanotaan anaerobiseksi glykolyysiksi.
- maitohappo on myrkyllistä liian korkeina pitoisuuksina.
Soluhengitys ja yhteyttäminen
"Hapeton soluhengitys" - Anaerobic respiration
Anaerobic respiration is a form of respiration using electron acceptors other than oxygen. Although oxygen is not used as the final electron acceptor, the process still uses a respiratory electron transport chain; it is respiration without oxygen.
_
Soluhengitys -cellular respiration, kuvia
_
Elektroninsiirtoketju
http://fi.wikipedia.org/wiki/Elektroninsiirtoketju
_
Mitokondriot ovat solujen voimaloita, joissa energiaa muodostetaan kemiallisesti, ja se varastoidaan korkeaenergiaisiin fosfaatteihin, yleensä ATP:hen eli adenosiinitrifosfaattiin
Soluhengitys on aerobisissa (happea saatavilla) oloissa elävien solujen aineenvaihdunnallinen reaktio, jonka avulla solut vapauttavat ravinnon sisältämää energiaa käyttöönsä
Yksinkertaistettuna soluhengityksen lähtöaineina ovat glukoosi ja happi ja lopputuotteena syntyy hiilidioksidia ja vettä. Reaktioissa vapautuu ATP-molekyylien (fosfaatti -sidos) sidoksien purkautuessa energiaa (36 x ATP).
Elektroninsiirtoketju (ja mitokondrio)
Katabolisen aineenvaihdunnan viimeinen vaihe on elektroninsiirtoketju, joka on yhteydessä oksidatiiviseen fosforylaatioon.
Videossa tutustutaan myös mitokondrion rakenteeseen.
Soluhengitys - CellularRespiration -Animaatio
Anaerobisissa olosuhteissa soluhengitys ei pääse etenemään glykolyysivaihetta pidemmälle, jolloin tapahtuu käymistä.
Käyminen voi olla joko maitohappo- tai alkoholikäymistä.
Käymisessä saatavan ATP:n määrä on hyvin pieni (2 x ATP), verrattuna aerobisissa oloissa tapahtuvaan soluhengitykseen.
Käyminen, eli fermentointi on aineenvaihduntatapahtuma, jossa pilkotaan orgaanisia aineita, usein hiilihydraatteja tai aminohappoja, energian saamiseksi. Käyminen tapahtuu tavallisesti ilman happea, mutta on olemassa myös niin sanottuja hapetuskäymisiä, jotka vaativat happea.
Käyminen tapahtuu solun sisällä.
Alkoholikäymisessä sokeri (yleensä glukoosi) hajoaa hiivan (Saccharomyces cerevisiae) tai bakteerien sisältämien entsyymien katalysoimissa aineenvaihduntareaktioissa pyruvaatiksi. Reaktiota nimitetään glykolyysiksi, ja sen yhteydessä syntyy ATP:tä solun energianlähteeksi. Glykolyysissä syntynyt pyruvaatti puolestaan hajoaa edelleen asetaldehydiksi ja hiilidioksidiksi.
Käymisreaktio on anaerobinen eli ei edellytä happea.
Nisäkkäillä lihassolut voivat tuottaa energiaa maitohappokäymisellä, elleivät ne saa verenkierrosta riittävästi happea. Maitohapon kertyminen soluihin aiheuttaa lihaskipua. Rasituksen loputtua maitohappo kulkeutuu lihaksista veren mukana maksaan, jossa se muuntuu takaisin pyruvaatiksi.
Glukoosi hajoaa solulimassa kahdeksi pyruvaatti-molekyyliksi (palorypälehappo) reaktiossa, jota kutsutaan glykolyysiksi, tai jos pyruvaatti pelkistyy maitohapoksi eikä jatka matkaansa mitokondrioon, anaerobiseksi (hapettomaksi) glykolyysiksi.
Pyruvaatin pelkistyessä NADH luovuttaa saamansa vedyn pyruvaatille. Glykolyysissä muodostuu yhtä glukoosia kohden 2 ATP molekyyliä, sekä kumpaakin puryvaattia kohden 6 vety-ionia (protonia), eli yhteensä 12 protonia, jotka pelkistävät NAD+ tai NADP+ (dihydronikotiiniamidi-adeniini-dinukleotidi/-"-fosfaatti) ionit. Muodostuneet NADH ja NADPH molekyylit siirtävät protonit elekronisiirtoketjun käyttöön, jos happea on tarpeeksi soluhengityksen käynnistämiseen
_
Jos kuitenkaan soluissa ei ole mitokondrioita, jossa soluhengitys voi tapahtua (veren punasolut ovat tällaisia) tai ei ole happea käytössä (kuten happivelassa), niin pyruvaatti muuntuu maitohapoiksi. Tällaista maitohappoon päättyvää glykolyysiä sanotaan anaerobiseksi glykolyysiksi.
- maitohappo on myrkyllistä liian korkeina pitoisuuksina.
Soluhengitys ja yhteyttäminen
"Hapeton soluhengitys" - Anaerobic respiration
Anaerobic respiration is a form of respiration using electron acceptors other than oxygen. Although oxygen is not used as the final electron acceptor, the process still uses a respiratory electron transport chain; it is respiration without oxygen.
_
Soluhengitys -cellular respiration, kuvia
_
Elektroninsiirtoketju
http://fi.wikipedia.org/wiki/Elektroninsiirtoketju
_
________
___
___
___
___
___
___
___
___
___
Ei kommentteja:
Lähetä kommentti
You are welcome to show your opinion here!